当前位置: X-MOL 学术Bio-des. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The effect of porosity on the mechanical properties of 3D-printed triply periodic minimal surface (TPMS) bioscaffold
Bio-Design and Manufacturing ( IF 8.1 ) Pub Date : 2019-11-05 , DOI: 10.1007/s42242-019-00054-7
Zizhen Cai , Zehua Liu , Xiaodong Hu , Hekun Kuang , Jinsong Zhai

Prevailing tissue degeneration caused by musculoskeletal maladies poses a great demand on bioscaffolds, which are artificial, biocompatible structures implanted into human bodies with appropriate mechanical properties. Recent advances in additive manufacturing, i.e., 3D printing, facilitated the fabrication of bioscaffolds with unprecedented geometrical complexity and size flexibility and allowed for the fabrication of topologies that would not have been achieved otherwise. In our work, we explored the effect of porosity on the mechanical properties of a periodic cellular structure. The structure was derived from the mathematically created triply periodic minimal surface (TPMS), namely the Sheet-Diamond topology. First, we employed a series of software including MathMod, Meshmixer, Netfabb and Cura to design the model. Then, we utilized additive manufacturing technology to fabricate the cellular structures with designated scale. Finally, we performed compressive testing to deduce the mechanical properties of each cellular structure. Results showed that, in comparison with the high-porosity group, the yield strength of the low-porosity group was 3 times higher, and the modulus was 2.5 times larger. Our experiments revealed a specific relationship between porosity and Young’s modulus of PLA-made Sheet-Diamond TPMS structure. Moreover, it was observed that the high- and low-porosity structures failed through distinctive mechanisms, with the former breaking down via buckling and the latter via micro-fracturing.

中文翻译:

孔隙率对3D打印三重周期性最小表面(TPMS)生物支架的力学性能的影响

由肌肉骨骼疾病引起的普遍的组织变性对生物支架提出了很高的要求,生物支架是植入人体中的具有适当机械性能的人工,生物相容性结构。增材制造(即3D打印)的最新进展促进了具有空前的几何复杂性和尺寸灵活性的生物支架的制造,并允许制造否则无法实现的拓扑。在我们的工作中,我们探索了孔隙度对周期性孔结构力学性能的影响。该结构是从数学上创建的三重周期最小曲面(TPMS)派生而来的,即Sheet-Diamond拓扑。首先,我们使用了包括MathMod,Meshmixer,Netfabb和Cura在内的一系列软件来设计模型。然后,我们利用增材制造技术来制造具有指定规模的蜂窝结构。最后,我们进行了压缩测试以推断出每个孔结构的机械性能。结果表明,与高孔隙率组相比,低孔隙率组的屈服强度高3倍,模量大2.5倍。我们的实验揭示了PLA制成的Sheet-Diamond TPMS结构的孔隙率与杨氏模量之间的特定关系。此外,观察到高孔隙率和低孔隙率的结构通过独特的机理而破裂,前者通过屈曲而破裂,而后者通过微破裂而破裂。我们进行了压缩测试,以推断出每个孔结构的机械性能。结果表明,与高孔隙率组相比,低孔隙率组的屈服强度高3倍,模量大2.5倍。我们的实验揭示了PLA制成的Sheet-Diamond TPMS结构的孔隙率与杨氏模量之间的特定关系。此外,观察到高孔隙率和低孔隙率的结构是通过独特的机理而破裂的,前者通过屈曲而破裂,而后者则通过微破裂而破裂。我们进行了压缩测试,以推断出每个孔结构的机械性能。结果表明,与高孔隙率组相比,低孔隙率组的屈服强度高3倍,模量大2.5倍。我们的实验揭示了PLA制成的Sheet-Diamond TPMS结构的孔隙率与杨氏模量之间的特定关系。此外,观察到高孔隙率和低孔隙率的结构是通过独特的机理而破裂的,前者通过屈曲而破裂,而后者则通过微破裂而破裂。我们的实验揭示了PLA制成的Sheet-Diamond TPMS结构的孔隙率与杨氏模量之间的特定关系。此外,观察到高孔隙率和低孔隙率的结构是通过独特的机理而破裂的,前者通过屈曲而破裂,而后者则通过微破裂而破裂。我们的实验揭示了PLA制成的Sheet-Diamond TPMS结构的孔隙率与杨氏模量之间的特定关系。此外,观察到高孔隙率和低孔隙率的结构通过独特的机理而破裂,前者通过屈曲而破裂,而后者通过微破裂而破裂。
更新日期:2019-11-05
down
wechat
bug