当前位置: X-MOL 学术Bio-des. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computer-aided CT image processing and modeling method for tibia microstructure
Bio-Design and Manufacturing ( IF 8.1 ) Pub Date : 2020-02-04 , DOI: 10.1007/s42242-020-00063-x
Pengju Wang , Su Wang

We present a method for computed tomography (CT) image processing and modeling for tibia microstructure, achieved by using computer graphics and fractal theory. Given the large-scale image data of tibia species with DICOM standard for clinical applications, we take advantage of algorithms such as image binarization, hot pixel removing and close operation to obtain visually clear image for tibia microstructure. All of these images are based on 20 CT scanning images with 30 μm slice thickness and 30 μm interval and continuous changes in pores. For each pore, we determine its profile by using an improved algorithm for edge detection. Then, to calculate its three-dimensional fractal dimension, we measure the circumference perimeter and area of the pores of bone microstructure using a line fitting method based on the least squares. Subsequently, we put forward an algorithm for the pore profiles through ellipse fitting. The results show that the pores have significant fractal characteristics because of the good linear correlation between the perimeter and the area parameters in log–log scale coordinates system, and the ratio of the elliptical short axis to the long axis through ellipse fitting tends to 0.6501. Based on support vector machine and structural risk minimization principle, we put forward a mapping database theory of structure parameters among the pores of CT images and fractal dimension, Poisson’s ratios, porosity and equivalent aperture. On this basis, we put forward a new concept for 3D modeling called precision-measuring digital expressing to reconstruct tibia microstructure for human hard tissue.

中文翻译:

胫骨微结构的计算机辅助CT图像处理和建模方法

我们提出了一种计算机断层扫描(CT)图像处理和胫骨微结构建模的方法,该方法通过使用计算机图形学和分形理论来实现。鉴于具有DICOM标准的胫骨种类的大规模图像数据用于临床应用,我们利用诸如图像二值化,热像素去除和关闭操作之类的算法来获得用于胫骨微结构的视觉清晰图像。所有这些图像都是基于20幅CT扫描图像,这些图像的切片厚度为30μm,间隔为30μm,并且孔隙连续变化。对于每个孔,我们使用改进的边缘检测算法确定其轮廓。然后,为了计算其三维分形维数,我们使用基于最小二乘法的线拟合方法来测量骨微结构的周长和孔区域。后来,我们提出了一种通过椭圆拟合的孔剖面算法。结果表明,孔隙具有明显的分形特征,这是因为在周长对数比例坐标系中周长与面积参数之间具有良好的线性相关性,并且通过椭圆拟合,椭圆短轴与长轴之比趋于0.6501。基于支持向量机和结构风险最小化原理,提出了CT图像孔隙与分形维数,泊松比,孔隙率和等效孔径之间的结构参数映射数据库理论。在此基础上,我们提出了3D建模的新概念,称为精确测量数字表达,以重建人体硬组织的胫骨微结构。结果表明,孔隙具有明显的分形特征,这是因为在周长对数比例坐标系中周长与面积参数之间具有良好的线性相关性,并且通过椭圆拟合,椭圆短轴与长轴之比趋于0.6501。基于支持向量机和结构风险最小化原理,提出了CT图像孔隙与分形维数,泊松比,孔隙率和等效孔径之间的结构参数映射数据库理论。在此基础上,我们提出了3D建模的新概念,称为精确测量数字表达,以重建人体硬组织的胫骨微结构。结果表明,孔隙具有明显的分形特征,这是因为对数-对数比例坐标系中的周长与面积参数之间具有良好的线性相关性,并且通过椭圆拟合,椭圆短轴与长轴之比趋于0.6501。基于支持向量机和结构风险最小化原理,提出了CT图像孔隙与分形维数,泊松比,孔隙率和等效孔径之间的结构参数映射数据库理论。在此基础上,我们提出了3D建模的新概念,称为精确测量数字表达,以重建人体硬组织的胫骨微结构。
更新日期:2020-02-04
down
wechat
bug