当前位置: X-MOL 学术bioRxiv. Synth. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design of Biologically Active Binary Protein 2D Materials
bioRxiv - Synthetic Biology Pub Date : 2020-09-19 , DOI: 10.1101/2020.09.19.304253
Ariel J Ben-Sasson , Joseph Watson , William Sheffler , Matthew C Johnson , Alice Bittleston , Logeshwaran Somasundaram , Justin Decarreau , Fang Jiao , Jiajun Chen , Andrew A Drabek , Sanchez M Jarrett , Justin M Kollman , Stephen C Blacklow , James J De Yoreo , Hannele Ruohola-Baker , Emmanuel Derivery , David Baker

Proteins that assemble into ordered two-dimensional arrays such as S-layers and designed analogues have intrigued bioengineers, but with the exception of a single lattice formed through non-rigid template streptavidin linkers, they are constituted from just one protein component. For modulating assembly dynamics and incorporating more complex functionality, materials composed of two components would have considerable advantages. Here we describe a computational method to generate de-novo binary 2D non-covalent co-assemblies by designing rigid asymmetric interfaces between two distinct protein dihedral building-blocks. The designed array components are soluble at mM concentrations, but when combined at nM concentrations, rapidly assemble into nearly-crystalline micrometer-scale p6m arrays nearly identical to the computational design model in vitro and in cells without the need of a two-dimensional support. Because the material is designed from the ground up, the components can be readily functionalized, and their symmetry reconfigured, enabling formation of ligand arrays with distinguishable surfaces to drive extensive receptor clustering, downstream protein recruitment, and signaling. Using quantitative microscopy we show that arrays assembled on living cells have component stoichiometry and likely structure similar to arrays formed in vitro, suggesting that our material can impose order onto fundamentally disordered substrates like cell membranes. We find further that in sharp contrast to previously characterized cell surface receptor binding assemblies such as antibodies and nanocages, which are rapidly endocytosed, large arrays assembled at the cell surface suppress endocytosis in a tunable manner, with potential therapeutic relevance for extending receptor engagement and immune evasion. Our work paves the way towards synthetic cell biology, where a new generation of multi-protein macroscale materials is designed to modulate cell responses and reshape synthetic and living systems.

中文翻译:

具有生物活性的二元蛋白质二维材料的设计

组装成有序的二维阵列(例如S层)和设计类似物的蛋白质吸引了生物工程人员,但除了通过非刚性模板链霉亲和素接头形成的单个晶格外,它们仅由一种蛋白质成分构成。为了调节装配动力学并结合更复杂的功能,由两个组件组成的材料将具有相当大的优势。在这里,我们描述了一种计算方法,该方法通过设计两个不同的蛋白质二面体构造块之间的刚性不对称界面来生成新颖的2D非共价二元共组装体。设计的阵列组件在mM浓度下可溶,但在nM浓度下组合时,快速地组装成几乎与晶体计算的微米级p6m阵列几乎相同的体外和细胞计算设计模型,而无需二维支持。由于材料是从头开始设计的,因此可以轻松地对组件进行功能化,并重新配置它们的对称性,从而能够形成具有可区分表面的配体阵列,从而驱动广泛的受体簇集,下游蛋白质募集和信号传导。使用定量显微镜,我们显示在活细胞上组装的阵列具有与体外形成的阵列相似的成分化学计量和可能的结构,这表明我们的材料可以对基本无序的底物(如细胞膜)施加顺序。我们进一步发现,与先前表征的细胞表面受体结合组件(例如抗体和纳米笼)迅速被内吞形成鲜明对比,在细胞表面组装的大阵列以可调的方式抑制了内吞作用,具有潜在的治疗意义,可扩大受体的结合和免疫逃避。我们的工作为合成细胞生物学铺平了道路,新一代的多蛋白宏观材料被设计用于调节细胞反应并重塑合成和生命系统。
更新日期:2020-09-20
down
wechat
bug