当前位置: X-MOL 学术Light Sci. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Converting lateral scanning into axial focusing to speed up three-dimensional microscopy
Light: Science & Applications ( IF 20.6 ) Pub Date : 2020-09-18 , DOI: 10.1038/s41377-020-00401-9
Tonmoy Chakraborty 1, 2 , Bingying Chen 1 , Stephan Daetwyler 1 , Bo-Jui Chang 1 , Oliver Vanderpoorten 3 , Etai Sapoznik 1 , Clemens F Kaminski 3 , Tuomas P J Knowles 4 , Kevin M Dean 1 , Reto Fiolka 1, 5
Affiliation  

In optical microscopy, the slow axial scanning rate of the objective or the sample has traditionally limited the speed of volumetric imaging. Recently, by conjugating either a movable mirror to the image plane in a remote-focusing geometry or an electrically tuneable lens (ETL) to the back focal plane, rapid axial scanning has been achieved. However, mechanical actuation of a mirror limits the axial scanning rate (usually only 10–100 Hz for piezoelectric or voice coil-based actuators), while ETLs introduce spherical and higher-order aberrations that prevent high-resolution imaging. In an effort to overcome these limitations, we introduce a novel optical design that transforms a lateral-scan motion into a spherical aberration-free axial scan that can be used for high-resolution imaging. Using a galvanometric mirror, we scan a laser beam laterally in a remote-focusing arm, which is then back-reflected from different heights of a mirror in the image space. We characterize the optical performance of this remote-focusing technique and use it to accelerate axially swept light-sheet microscopy by an order of magnitude, allowing the quantification of rapid vesicular dynamics in three dimensions. We also demonstrate resonant remote focusing at 12 kHz with a two-photon raster-scanning microscope, which allows rapid imaging of brain tissues and zebrafish cardiac dynamics with diffraction-limited resolution.



中文翻译:

将横向扫描转换为轴向聚焦以加速三维显微

在光学显微镜中,物镜或样品的缓慢轴向扫描速率传统上限制了体积成像的速度。最近,通过在远程聚焦几何结构中将可移动反射镜与像平面共轭或将电可调透镜 (ETL) 与后焦平面共轭,已经实现了快速轴向扫描。然而,镜子的机械驱动限制了轴向扫描速率(对于基于压电或音圈的驱动器,通常只有 10-100 Hz),而 ETL 引入了球面和高阶像差,从而阻止了高分辨率成像。为了克服这些限制,我们引入了一种新颖的光学设计,将横向扫描运动转换为可用于高分辨率成像的无球面像差轴向扫描。使用电流镜,我们在远程聚焦臂中横向扫描激光束,然后从图像空间中不同高度的镜子进行反向反射。我们描述了这种远程聚焦技术的光学性能,并使用它来将轴向扫描光片显微镜加速一个数量级,从而可以在三个维度上量化快速囊泡动力学。我们还使用双光子光栅扫描显微镜演示了 12 kHz 的共振远程聚焦,该显微镜允许以衍射极限分辨率对脑组织和斑马鱼心脏动力学进行快速成像。我们描述了这种远程聚焦技术的光学性能,并使用它来将轴向扫描光片显微镜加速一个数量级,从而可以在三个维度上量化快速囊泡动力学。我们还使用双光子光栅扫描显微镜演示了 12 kHz 的共振远程聚焦,该显微镜允许以衍射极限分辨率对脑组织和斑马鱼心脏动力学进行快速成像。我们描述了这种远程聚焦技术的光学性能,并使用它来将轴向扫描光片显微镜加速一个数量级,从而可以在三个维度上量化快速囊泡动力学。我们还使用双光子光栅扫描显微镜演示了 12 kHz 的共振远程聚焦,该显微镜允许以衍射极限分辨率对脑组织和斑马鱼心脏动力学进行快速成像。

更新日期:2020-09-20
down
wechat
bug