当前位置: X-MOL 学术Wave. Random Complex Media › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Memory response on wave propagation in a micropolar magneto-thermo-viscoelastic half-space
Waves in Random and Complex Media Pub Date : 2020-09-18 , DOI: 10.1080/17455030.2020.1822564
Abhik Sur 1
Affiliation  

The present analysis reports the Kelvin–Voigt-type magneto-thermo-viscoelastic interactions in a thermally conducting unbounded half-space whose surface is subjected to time-harmonic thermal source in the context of micropolar thermoelasticity, being enlightened by memory-dependent derivative (MDD) in the context of three-phase (3P) lag model. The bounding plane of the half-space is stress-free and is subjected to a prescribed temperature distribution. Employing the Laplace transform and Fourier transforms, analytical results for the distributions of the thermophysical quantities have been derived in the transformed domain. The numerical inversions of the respective transforms have been carried out using a suitable numerical scheme based on Fourier series expansion technique. Numerical computations for the stresses, displacement and temperature within the medium have been carried out and also have been demonstrated graphically. Since, micropolar elasticity allows better results to be obtained for microstructural and singular domains as compared to the classical theory of elasticity, therefore, the investigations outline how the micropolarity, magnetic field and viscoelastic parameters influence the thermophysical quantities of the half-space to determine the microstructural changes within the body. Moreover, significant differences on the thermophysical quantities are revealed due to the influence of memory effect and time-delay also, which helps to determine the past effects to the present.



中文翻译:

微极磁热粘弹性半空间中波传播的记忆响应

本分析报告了热传导无界半空间中的开尔文-福伊特型磁热粘弹性相互作用,其表面在微极热弹性的背景下受到时谐热源的影响,受到记忆相关导数 (MDD) 的启发。 ) 在三相 (3P) 滞后模型的背景下。半空间的边界平面是无应力的,并受到规定的温度分布。采用拉普拉斯变换和傅里叶变换,得到了变换域中热物理量分布的解析结果。已经使用基于傅里叶级数展开技术的合适的数值方案来执行各个变换的数值反演。应力的数值计算,已经进行了介质内的位移和温度,并以图形方式进行了演示。由于与经典的弹性理论相比,微极弹性可以为微结构和奇异域获得更好的结果,因此,研究概述了微极性、磁场和粘弹性参数如何影响半空间的热物理量以确定体内的微观结构变化。此外,由于记忆效应和时间延迟的影响,热物理量的显着差异也被揭示出来,这有助于确定过去对现在的影响。与经典的弹性理论相比,微极弹性可以为微结构和奇异域获得更好的结果,因此,研究概述了微极性、磁场和粘弹性参数如何影响半空间的热物理量以确定微结构变化体内。此外,由于记忆效应和时间延迟的影响,热物理量的显着差异也被揭示出来,这有助于确定过去对现在的影响。与经典的弹性理论相比,微极弹性可以为微结构和奇异域获得更好的结果,因此,研究概述了微极性、磁场和粘弹性参数如何影响半空间的热物理量以确定微结构变化体内。此外,由于记忆效应和时间延迟的影响,热物理量的显着差异也被揭示出来,这有助于确定过去对现在的影响。

更新日期:2020-09-18
down
wechat
bug