当前位置: X-MOL 学术Neural Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Repetitive Control for Multi-Joint Arm Movements Based on Virtual Trajectories
Neural Computation ( IF 2.7 ) Pub Date : 2020-11-01 , DOI: 10.1162/neco_a_01322
Yoji Uno 1 , Takehiro Suzuki 1 , Takahiro Kagawa 2
Affiliation  

According to the neuromuscular model of virtual trajectory control, the postures and movements of limbs are performed by shifting the equilibrium positions determined by agonist and antagonist muscle activities. In this study, we develop virtual trajectory control for the reaching movements of a multi-joint arm, introducing a proportional-derivative feedback control scheme. In virtual trajectory control, it is crucial to design a suitable virtual trajectory such that the desired trajectory can be realized. To this end, we propose an algorithm for updating virtual trajectories in repetitive control, which can be regarded as a Newton-like method in a function space. In our repetitive control, the virtual trajectory is corrected without explicit calculation of the arm dynamics, and the actual trajectory converges to the desired trajectory. Using computer simulations, we assessed the proposed repetitive control for the trajectory tracking of a two-link arm. Our results confirmed that when the feedback gains were reasonably high and the sampling time was sufficiently small, the virtual trajectory was adequately updated, and the desired trajectory was almost achieved within approximately 10 iterative trials. We also propose a method for modifying the virtual trajectory to ensure that the formation of the actual trajectory is identical even when the feedback gains are changed. This modification method makes it possible to execute flexible control, in which the feedback gains are effectively altered according to motion tasks.

中文翻译:

基于虚拟轨迹的多关节手臂运动重复控制

根据虚拟轨迹控制的神经肌肉模型,通过移动由主动肌和拮抗肌活动决定的平衡位置来执行肢体的姿势和运动。在这项研究中,我们为多关节臂的到达运动开发了虚拟轨迹控制,引入了比例微分反馈控制方案。在虚拟轨迹控制中,设计合适的虚拟轨迹以实现期望的轨迹至关重要。为此,我们提出了一种在重复控制中更新虚拟轨迹的算法,可以将其视为函数空间中的类牛顿方法。在我们的重复控制中,在没有显式计算手臂动力学的情况下,对虚拟轨迹进行校正,实际轨迹收敛到所需轨迹。使用计算机模拟,我们评估了建议的双连杆臂轨迹跟踪重复控制。我们的结果证实,当反馈增益相当高且采样时间足够小时,虚拟轨迹得到充分更新,并且在大约 10 次迭代试验内几乎实现了所需的轨迹。我们还提出了一种修改虚拟轨迹的方法,以确保即使在反馈增益发生变化时,实际轨迹的形成也是相同的。这种修改方法可以执行灵活的控制,其中根据运动任务有效地改变反馈增益。我们的结果证实,当反馈增益相当高且采样时间足够小时,虚拟轨迹得到充分更新,并且在大约 10 次迭代试验内几乎实现了所需的轨迹。我们还提出了一种修改虚拟轨迹的方法,以确保即使在反馈增益发生变化时,实际轨迹的形成也是相同的。这种修改方法可以执行灵活的控制,其中根据运动任务有效地改变反馈增益。我们的结果证实,当反馈增益相当高且采样时间足够小时,虚拟轨迹得到充分更新,并且在大约 10 次迭代试验内几乎实现了所需的轨迹。我们还提出了一种修改虚拟轨迹的方法,以确保即使在反馈增益发生变化时,实际轨迹的形成也是相同的。这种修改方法可以执行灵活的控制,其中根据运动任务有效地改变反馈增益。我们还提出了一种修改虚拟轨迹的方法,以确保即使在反馈增益发生变化时,实际轨迹的形成也是相同的。这种修改方法可以执行灵活的控制,其中根据运动任务有效地改变反馈增益。我们还提出了一种修改虚拟轨迹的方法,以确保即使在反馈增益发生变化时,实际轨迹的形成也是相同的。这种修改方法可以执行灵活的控制,其中根据运动任务有效地改变反馈增益。
更新日期:2020-11-01
down
wechat
bug