当前位置: X-MOL 学术Int. J. Energy Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Graphene‐integrated CuCo2S4 microspheres as a sustainable anode material for high‐performance Li‐ion batteries
International Journal of Energy Research ( IF 4.3 ) Pub Date : 2020-09-17 , DOI: 10.1002/er.5804
Abu Talha Aqueel Ahmed 1 , Bo Hou 2 , S. M. Pawar 1 , Hyungsang Kim 1 , Hyunsik Im 1
Affiliation  

Commercial lithium–ion batteries (LIBs) are insufficient to bridge the energy density gap between demand and supply in advanced heavy and portable electronic devices because of graphite anodes (poor theoretical capacity: 372 mAh g−1). Ternary chalcogenide metal‐sulfides are promising as alternative anode materials in high power and energy densities but suffer from capacity fading with poor long‐term cycling stability due to the dissolution of polysulfide species created during the lithium‐ion insertion/de‐insertion process. Here, we report the hydrothermal synthesis of graphene integrated CuCo2S4 microparticles as a high‐capacity and sustainable anode material for LIBs. We solve the concentration gradient of lithium polysulfide at the interface of electrode/electrolyte via integrating graphene into the active metal sulfide anode material. The mechanically flexible and highly conductive nature of graphene helps relieve undesirable elongation and shrinkage during battery cycling, suppressing active material dissolution and enhancing electron/ion transport through the electrochemical double‐layer (EDL). Our one step approach demonstrates towards the practical application of advanced metal sulfide anodes for LIBs.

中文翻译:

石墨烯集成的CuCo2S4微球可作为高性能锂离子电池的可持续阳极材料

商业化的锂离子电池(LIB)不足以弥合先进的重型和便携式电子设备中供需之间的能量密度差距,这是因为石墨阳极(较差的理论容量:372 mAh g -1)。三元硫属元素金属硫化物有望在高功率和高能量密度下作为替代阳极材料,但由于锂离子插入/去插入过程中产生的多硫化物种类的溶解,其容量衰减和长期循环稳定性差。在这里,我们报告水热合成石墨烯集成的CuCo 2 S 4微粒作为锂离子电池的高容量和可持续阳极材料。通过将石墨烯集成到活性金属硫化物负极材料中,我们解决了电极/电解质界面处多硫化锂的浓度梯度。石墨烯的机械柔韧性和高导电性有助于缓解电池循环过程中不希望的伸长和收缩,抑制活性材料溶解并增强电子/离子通过电化学双层(EDL)的传输。我们的一步方法证明了LIB先进金属硫化物阳极的实际应用。
更新日期:2020-09-17
down
wechat
bug