当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Converting 2D Nanofiber Membranes to 3D Hierarchical Assemblies with Structural and Compositional Gradients Regulates Cell Behavior.
Advanced Materials ( IF 27.4 ) Pub Date : 2020-09-18 , DOI: 10.1002/adma.202003754
Shixuan Chen 1 , Alec McCarthy 1 , Johnson V John 1 , Yajuan Su 1 , Jingwei Xie 1, 2
Affiliation  

New methods are described for converting 2D electrospun nanofiber membranes to 3D hierarchical assemblies with structural and compositional gradients. Pore‐size gradients are generated by tuning the expansion of 2D membranes in different layers with incorporation of various amounts of a surfactant during the gas‐foaming process. The gradient in fiber organizations is formed by expanding 2D nanofiber membranes composed of multiple regions collected by varying rotating speeds of mandrel. A compositional gradient on 3D assemblies consisting of radially aligned nanofibers is prepared by dripping, diffusion, and crosslinking. Bone mesenchymal stem cells (BMSCs) on the 3D nanofiber assemblies with smaller pore size show significantly higher expression of hypoxia‐related markers and enhanced chondrogenic differentiation compared to BMSCs cultured on the assemblies with larger pore size. The basic fibroblast growth factor gradient can accelerate fibroblast migration from the surrounding area to the center in an in vitro wound healing model. Taken together, 3D nanofiber assemblies with gradients in pore sizes, fiber organizations, and contents of signaling molecules can be used to engineer tissue constructs for tissue repair and build biomimetic disease models for studying disease biology and screening drugs, in particular, for interface tissue engineering and modeling.

中文翻译:

将 2D 纳米纤维膜转换为具有结构和成分梯度的 3D 分层组件可调节细胞行为。

描述了将 2D 电纺纳米纤维膜转化为具有结构和成分梯度的 3D 分层组件的新方法。通过在气体发泡过程中掺入不同量的表面活性剂来调整不同层中二维膜的膨胀,从而产生孔径梯度。纤维组织中的梯度是通过扩展二维纳米纤维膜形成的,该膜由通过不同的心轴旋转速度收集的多个区域组成。由径向排列的纳米纤维组成的 3D 组件的成分梯度是通过滴注、扩散和交联制备的。与在较大孔径的组件上培养的 BMSC 相比,在较小孔径的 3D 纳米纤维组件上培养的骨间充质干细胞 (BMSC) 表现出明显更高的缺氧相关标记物表达和增强的软骨分化。在体外伤口愈合模型中,碱性成纤维细胞生长因子梯度可以加速成纤维细胞从周围区域向中心的迁移。总而言之,具有孔径、纤维组织和信号分子含量梯度的 3D 纳米纤维组件可用于设计用于组织修复的组织结构,并构建用于研究疾病生物学和筛选药物的仿生疾病模型,特别是用于界面组织工程和建模。
更新日期:2020-10-26
down
wechat
bug