当前位置: X-MOL 学术Adv. Eng. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tailoring Mechanical Properties of Mg–Al–Zn–Sn–Mn Alloy by Multipass Equal Channel Angular Pressing
Advanced Engineering Materials ( IF 3.4 ) Pub Date : 2020-09-19 , DOI: 10.1002/adem.202000790
Min Zha 1, 2, 3 , Chun-Xue Wang 2 , Zhong-Zheng Jin 2 , Hai-Long Jia 2, 3 , Hong Xu 2 , Ping-Yu Zhang 2 , Yu Huang 2 , Ping-Kui Ma 2 , Hui-Yuan Wang 1, 2, 3
Affiliation  

Herein, the influence of equal channel angular pressing (ECAP) routes, i.e., A and Bc, on the microstructure and texture evolution of a Mg–3.7Al–0.7Zn–0.8Sn–0.4Mn (wt%) alloy is investigated by scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and X‐ray diffraction (XRD). It is found that with increasing the number of ECAP passes, the area fraction of the dynamically precipitated secondary‐phase particles increases, whereas particle size becomes larger. After four and six passes of ECAP via route A, shear deformation induced by ECAP promotes the incline of c‐axes toward extrusion direction (ED). The optimum room temperature (RT) mechanical properties (yield strength of ≈225 MPa, ultimate tensile strength of ≈312 MPa, and elongation to fracture of ≈31.9%) are obtained after four passes of ECAP at 200 °C via route A. The improved strength results from fine dynamic recrystallization (DRX)/ed grains, nanoscale secondary‐phase particles, and basal texture. Herein, it is indicated that Mg–Al–Zn–Sn alloys have great potential as low‐cost high‐strength‐ductility wrought Mg alloys.

中文翻译:

多道等通道角向压制Mg-Al-Zn-Sn-Mn合金的力学性能

在此,通过扫描研究了等通道角挤压(ECAP)路径,即A和Bc对Mg-3.7Al-0.7Zn-0.8Sn-0.4Mn(wt%)合金的组织和织构演变的影响。电子显微镜(SEM),电子反向散射衍射(EBSD)和X射线衍射(XRD)。发现随着ECAP通过次数的增加,动态沉淀的第二相颗粒的面积分数增加,而颗粒尺寸变大。在通过路线A的ECAP四次和六次通过之后,ECAP引起的剪切变形促进了c的倾斜朝向挤压方向(ED)的轴。在200°C下通过路径A通过四次ECAP后,可获得最佳的室温(RT)力学性能(屈服强度约为225 MPa,极限抗拉强度约为312 MPa,断裂伸长约为31.9%)。优良的动态重结晶(DRX)/晶粒,纳米级次生相颗粒和基础织构可提高强度。在此表明,Mg-Al-Zn-Sn合金具有低成本,高强度延展性的Mg合金的巨大潜力。
更新日期:2020-09-19
down
wechat
bug