当前位置: X-MOL 学术Mech. Syst. Signal Process. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The position control of the ball and beam system using state-disturbance observe-based adaptive fuzzy sliding mode control in presence of matched and mismatched uncertainties
Mechanical Systems and Signal Processing ( IF 8.4 ) Pub Date : 2021-03-01 , DOI: 10.1016/j.ymssp.2020.107243
Saeed Zaare , Mohammad Reza Soltanpour

Abstract This paper presents a state-disturbance (S-D) observer-based adaptive fuzzy sliding mode control (AFSMC) to control the ball and beam system (BBS) in the presence of matched and mismatched uncertainties. First, an SMC scheme is designed to an error-based state-space representation of the BBS involving uncertainties. Stability analysis shows that the closed-loop system with the proposed SMC in the presence of uncertainties has global asymptotic stability. Second, a finite-time S-D observer is used to estimate uncertainties, the speed of the ball moving on the beam, and the angular velocity of the beam rotation. In this case, not only does the implementation of the S-D observer-based SMC eliminate the difficulty of access to information of state variables but also it can reach a suitable control input range by selecting smaller control input coefficients. Mathematical proof proves that the closed-loop system reaches the global asymptotic stability using the proposed S-D observer-based SMC in the presence of uncertainties. Finally, an adaptive fuzzy approximator is designed such that if the correct estimation of the boundary of uncertainties is not available, the closed-loop system with the S-D observer-based AFSMC achieves at least the global uniform bounded stability. The simulation and experimental results verify the efficiency of the suggested method compared to similar methods.

中文翻译:

在存在匹配和不匹配不确定性的情况下使用基于状态干扰观测的自适应模糊滑模控制的球和梁系统的位置控制

摘要 本文提出了一种基于状态干扰 (SD) 观测器的自适应模糊滑模控制 (AFSMC),以在存在匹配和不匹配不确定性的情况下控制球梁系统 (BBS)。首先,SMC 方案被设计为涉及不确定性的 BBS 的基于错误的状态空间表示。稳定性分析表明,在存在不确定性的情况下,采用所提出的 SMC 的闭环系统具有全局渐近稳定性。其次,使用有限时间 SD 观测器来估计不确定性、球在梁上移动的速度以及梁旋转的角速度。在这种情况下,基于SD观察器的SMC的实现不仅消除了获取状态变量信息的困难,而且可以通过选择较小的控制输入系数来达到合适的控制输入范围。数学证明证明,在存在不确定性的情况下,闭环系统使用所提出的基于 SD 观测器的 SMC 达到了全局渐近稳定性。最后,设计了一个自适应模糊逼近器,如果不确定性边界的正确估计不可用,则具有基于 SD 观测器的 AFSMC 的闭环系统至少可以实现全局一致有界稳定性。与类似方法相比,仿真和实验结果验证了所建议方法的效率。数学证明证明,在存在不确定性的情况下,闭环系统使用所提出的基于 SD 观测器的 SMC 达到了全局渐近稳定性。最后,设计了一个自适应模糊逼近器,如果不确定性边界的正确估计不可用,则具有基于 SD 观测器的 AFSMC 的闭环系统至少可以实现全局一致有界稳定性。与类似方法相比,仿真和实验结果验证了所建议方法的效率。数学证明证明,在存在不确定性的情况下,闭环系统使用所提出的基于 SD 观测器的 SMC 达到了全局渐近稳定性。最后,设计了一个自适应模糊逼近器,如果不确定性边界的正确估计不可用,则具有基于 SD 观测器的 AFSMC 的闭环系统至少可以实现全局一致有界稳定性。与类似方法相比,仿真和实验结果验证了所建议方法的效率。具有基于 SD 观测器的 AFSMC 的闭环系统至少实现了全局均匀有界稳定性。与类似方法相比,仿真和实验结果验证了所建议方法的效率。具有基于 SD 观测器的 AFSMC 的闭环系统至少实现了全局均匀有界稳定性。仿真和实验结果验证了所建议方法与类似方法相比的效率。
更新日期:2021-03-01
down
wechat
bug