当前位置: X-MOL 学术Mar. Petrol. Geol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermal properties of sediments in the East Siberian Arctic Seas: A case study in the Buor-Khaya Bay
Marine and Petroleum Geology ( IF 3.7 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.marpetgeo.2020.104672
Evgeny Chuvilin , Boris Bukhanov , Sergey Grebenkin , Vladimir Tumskoy , Natalia Shakhova , Oleg Dudarev , Igor Semiletov , Mikhail Spasennykh

Abstract The temperature and thermal properties of shelf sediments from the East Siberian, Laptev, and Kara Seas were determined from field investigations. The sediments were in an unfrozen cryotic state (ice-free) and showed negative temperatures, ranging from −1.0 to −1.4 °C. These temperatures imply the presence of widespread subsea permafrost from the shelf to the continental slope of the East Siberian Arctic Seas, reaching ~1000–1500 km off the coast. The thermal conductivity and heat capacity of sediments (up to a depth of 0.5 m) from the Eastern Arctic Seas averaged 0.95 W/(m·K) and 3010 kJ/(m3·K), respectively. We also conducted temperature and thermal conductivity measurements of the upper sediment horizons of the permafrost in the Laptev Sea shelf (drilling depth of 57 m). The analysis of sediment cores ensured the determination of thermal conductivity with depth. We also analyzed the influence of moisture content, density, particle size distribution, salinity, and thermal state on sediment thermal conductivity. The thermal conductivity of unfrozen cryotic (ice-free) sediments was predominantly dependent on the contents of silt and clay. In general, unfrozen cryotic sandy sediments had a thermal conductivity range 1.7–2.0 W/(m·K), a moisture content of ~20%, and a density of 2.0–2.2 g/сm3. Frozen (ice-containing) sediments showed higher thermal conductivities of 2.5–3.0 W/(m·K), with a density of 1.9–2.0 g/cm3 and a moisture content exceeding 25–30%. The high thermal conductivity of sand was associated with low salinity (0.1–0.2%), high ice content, and moderate unfrozen water content.

中文翻译:

东西伯利亚北冰洋沉积物的热特性:以 Buor-Khaya 湾为例

摘要 通过野外调查确定了东西伯利亚海、拉普捷夫海和喀拉海陆架沉积物的温度和热学性质。沉积物处于未冻结的低温状态(无冰)并显示负温度,范围从 -1.0 到 -1.4 °C。这些温度意味着从大陆架到东西伯利亚北冰洋大陆坡存在广泛的海底永久冻土,距离海岸约 1000-1500 公里。东北极海沉积物(最深 0.5 m)的热导率和热容分别平均为 0.95 W/(m·K) 和 3010 kJ/(m3·K)。我们还对拉普捷夫海架(钻孔深度 57 m)的永久冻土层上部沉积层进行了温度和热导率测量。沉积岩心的分析确保了热导率随深度的确定。我们还分析了水分含量、密度、粒度分布、盐度和热状态对沉积物热导率的影响。未冻结的低温(无冰)沉积物的热导率主要取决于淤泥和粘土的含量。一般来说,未冻结的低温砂质沉积物的导热系数范围为 1.7-2.0 W/(m·K),含水量约为 20%,密度为 2.0-2.2 g/cm3。冷冻(含冰)沉积物的热导率较高,为 2.5-3.0 W/(m·K),密度为 1.9-2.0 g/cm3,水分含量超过 25-30%。沙子的高热导率与低盐度(0.1-0.2%)、高冰含量和中等未冻水含量有关。我们还分析了水分含量、密度、粒度分布、盐度和热状态对沉积物热导率的影响。未冻结的低温(无冰)沉积物的热导率主要取决于淤泥和粘土的含量。一般来说,未冻结的低温砂质沉积物的导热系数范围为 1.7-2.0 W/(m·K),含水量约为 20%,密度为 2.0-2.2 g/cm3。冷冻(含冰)沉积物的热导率较高,为 2.5-3.0 W/(m·K),密度为 1.9-2.0 g/cm3,水分含量超过 25-30%。沙子的高热导率与低盐度(0.1-0.2%)、高冰含量和中等未冻水含量有关。我们还分析了水分含量、密度、粒度分布、盐度和热状态对沉积物热导率的影响。未冻结的低温(无冰)沉积物的热导率主要取决于淤泥和粘土的含量。一般来说,未冻结的低温砂质沉积物的导热系数范围为 1.7-2.0 W/(m·K),含水量约为 20%,密度为 2.0-2.2 g/cm3。冷冻(含冰)沉积物显示出较高的热导率,为 2.5-3.0 W/(m·K),密度为 1.9-2.0 g/cm3,水分含量超过 25-30%。沙子的高热导率与低盐度(0.1-0.2%)、高冰含量和中等未冻水含量有关。和热状态对沉积物热导率的影响。未冻结的低温(无冰)沉积物的热导率主要取决于淤泥和粘土的含量。一般来说,未冻结的低温砂质沉积物的导热系数范围为 1.7-2.0 W/(m·K),含水量约为 20%,密度为 2.0-2.2 g/cm3。冷冻(含冰)沉积物的热导率较高,为 2.5-3.0 W/(m·K),密度为 1.9-2.0 g/cm3,水分含量超过 25-30%。沙子的高热导率与低盐度(0.1-0.2%)、高冰含量和中等未冻水含量有关。和热状态对沉积物热导率的影响。未冻结的低温(无冰)沉积物的热导率主要取决于淤泥和粘土的含量。一般来说,未冻结的低温砂质沉积物的导热系数范围为 1.7-2.0 W/(m·K),含水量约为 20%,密度为 2.0-2.2 g/cm3。冷冻(含冰)沉积物的热导率较高,为 2.5-3.0 W/(m·K),密度为 1.9-2.0 g/cm3,水分含量超过 25-30%。沙子的高热导率与低盐度(0.1-0.2%)、高冰含量和中等未冻水含量有关。未冻结的低温砂质沉积物的导热系数范围为 1.7-2.0 W/(m·K),水分含量约为 20%,密度为 2.0-2.2 g/sm3。冷冻(含冰)沉积物的热导率较高,为 2.5-3.0 W/(m·K),密度为 1.9-2.0 g/cm3,水分含量超过 25-30%。沙子的高热导率与低盐度(0.1-0.2%)、高冰含量和中等未冻水含量有关。未冻结的低温砂质沉积物的导热系数范围为 1.7-2.0 W/(m·K),水分含量约为 20%,密度为 2.0-2.2 g/cm3。冷冻(含冰)沉积物显示出较高的热导率,为 2.5-3.0 W/(m·K),密度为 1.9-2.0 g/cm3,水分含量超过 25-30%。沙子的高热导率与低盐度(0.1-0.2%)、高冰含量和中等未冻水含量有关。
更新日期:2021-01-01
down
wechat
bug