当前位置: X-MOL 学术J. Power Sources › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Challenges, laser processing and electrochemical characteristics on application of ultra-thick electrode for high-energy lithium-ion battery
Journal of Power Sources ( IF 8.1 ) Pub Date : 2020-09-18 , DOI: 10.1016/j.jpowsour.2020.228948
Junsu Park , Chanyoung Jeon , Wonhee Kim , Sung-Jae Bong , Sungho Jeong , Hyeong-Jin Kim

Lithium ion battery with ultra-thick electrode is hardly manufactured in practice due to its poor rate capability and large unusable capacity caused by high internal resistances in spite of the potential benefits of a high capacity and cost reduction by less inactive material usage in the same volume. In this work, we report the effectiveness of laser structuring of ultra-thick electrodes for high-energy battery. Lithium cobalt-oxide cathode (700 μm) and graphite anode (650 μm) are prepared with the areal discharge capacity, 25 mAh cm−2. After laser structuring, electrode surface morphology and chemistry are investigated. Internal resistances and diffusion characteristics are analyzed by electrochemical impedance spectroscopy using symmetric cells with non-intercalating salt. Geometric changes of ultra-thick electrode by laser structuring contributes to decrease of tortuosity, decrease of electronic and ionic resistances, and enhancement of diffusion characteristics in both laser-structured cathode and anode without chemically negative reaction, thermal damage or a failure of electrode structure. The rate capability and areal discharge capacity of laser-structured cells increases by 5 times than that of unstructured one at 0.1 C condition. Therefore, laser structuring of ultra-thick electrodes is a viable approach for the high-energy battery with practical use of space.



中文翻译:

高能锂离子电池超厚电极应用的挑战,激光加工和电化学特性

带有超厚电极的锂离子电池由于其高倍率性能和高内阻导致的大容量不可用容量,实际上很难制造,尽管在相同体积下使用较少量的惰性材料具有高容量和降低成本的潜在好处。 。在这项工作中,我们报告了用于高能电池的超厚电极的激光结构化的有效性。制备了面积为25 mAh cm -2的锂钴氧化物阴极(700μm)和石墨阳极(650μm)。在激光结构化之后,研究了电极表面的形态和化学性质。使用带有非嵌入盐的对称池,通过电化学阻抗谱分析内阻和扩散特性。通过激光结构化的超厚电极的几何变化有助于降低曲折度,降低电子和离子电阻,并增强激光结构的阴极和阳极中的扩散特性,而不会发生化学负反应,热损伤或电极结构破坏。激光结构的电池在0.1 C条件下的速率能力和面放电容量比非结构化的电池提高了5倍。因此,对于具有实际使用空间的高能量电池,超厚电极的激光结构化是一种可行的方法。

更新日期:2020-09-20
down
wechat
bug