当前位置: X-MOL 学术J. Power Sources › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High Li-ion conductive composite polymer electrolytes for all-solid-state Li-metal batteries
Journal of Power Sources ( IF 8.1 ) Pub Date : 2020-09-18 , DOI: 10.1016/j.jpowsour.2020.228929
Qiongyu Zhou , Qinghui Li , Songli Liu , Xin Yin , Bing Huang , Minqi Sheng

Rechargeable all-solid-state batteries have better safety and higher energy density than the commercial rechargeable Li-ion batteries with organic liquid electrolytes. However, it is still quite challenging to develop a thin, flexible and high Li-ion conductive solid electrolyte for all-solid-state batteries. Here we develop a flexible poly(ethylene oxide) (PEO)-based composite electrolyte with high ionic conductivity of 1.3 × 10−4 S cm−1 at 30 °C. Fast Li-ion conductive NASICON Li1.3Al0.3Hf1.7(PO4)3 (LAHP) powders with a high bulk ionic conductivity of 7 × 10−4 S cm−1 at 25 °C are added into PEO-LiTFSI electrolyte to increase the total Li-ion conductivity of the electrolyte. Solid nuclear magnetic resonance (NMR) has been employed to analyze the Li-ion conducting mechanism of the electrolyte. Moreover, the composite electrolyte PEO-LiTFSI-20LAHP with a more amorphous component shows better electrochemical stability than the PEO-LiTFSI electrolyte. The performance of the electrolyte PEO-LiTFSI-20LAHP is also tested in different all-solid-state cells; the composite membrane blocked lithium-dendrite growth, which increases the cycling life of all-solid-state cells.



中文翻译:

用于全固态锂金属电池的高锂离子导电复合聚合物电解质

可充电全固态电池比带有有机液体电解质的商用可充电锂离子电池具有更好的安全性和更高的能量密度。然而,开发用于全固态电池的薄的,柔性的和高锂离子传导性固体电解质仍然是非常具有挑战性的。在这里,我们开发了一种在30°C下具有1.3×10 -4  S cm -1的高离子电导率的柔性聚环氧乙烷(PEO)基复合电解质。具有7×10 -4  S cm -1的高离子电导率的快速锂离子导电NASICON Li 1.3 Al 0.3 Hf 1.7(PO 43(LAHP)粉末在25°C时,将其添加到PEO-LiTFSI电解质中以增加电解质的总锂离子电导率。固体核磁共振(NMR)已用于分析电解质的锂离子传导机理。而且,具有更多无定形组分的复合电解质PEO-LiTFSI-20LAHP显示出比PEO-LiTFSI电解质更好的电化学稳定性。PEO-LiTFSI-20LAHP电解质的性能也在不同的全固态电池中进行了测试;复合膜阻止了锂树枝状晶体的生长,从而延长了全固态电池的循环寿命。

更新日期:2020-09-20
down
wechat
bug