当前位置: X-MOL 学术J. Ind. Eng. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An overview of converting reductive photocatalyst into all solid-state and direct Z-scheme system for water splitting and CO2 reduction
Journal of Industrial and Engineering Chemistry ( IF 6.1 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.jiec.2020.09.006
Pankaj Raizada , Abhinandan Kumar , Vasudha Hasija , Pardeep Singh , Vijay Kumar Thakur , Aftab Aslam Parwaz Khan

Abstract Considering the current scenario of rising environmental and energy concerns, engineering of Z-scheme photocatalytic systems is in the spotlight. The prime reason for this includes efficient redox abilities and effective space separation along with the migration of photoinduced charge carriers over conventional heterojunction systems. Herein we foreground the stumbling blocks of traditional heterojunction systems and enlighten the generations of Z-scheme photocatalysis originating from liquid-phase to direct Z-scheme photocatalytic systems. We provide substantial criteria and selection aspects of choosing reductive type photocatalysts as a potential aspirant for the Z-scheme photocatalytic system. As Z-scheme photocatalytic systems render effective space separation of photogenerated carriers, active species generation, wide optical absorption and amended redox ability. We focus on comprehensive illustration of all solid-state and direct Z-scheme photocatalysts by coupling reductive type photocatalysts with other semiconductor material and explored their potential for efficacious conversion of solar energy into functional energy. Herein, we aim to provide in-depth and updated criteria for selecting Z-scheme photocatalysts for CO2 reduction, water splitting, and nitrogen fixation. Lastly, the article compiles with a conclusive note about future perspectives and challenges accompanying all solid-state and direct Z-scheme Z photocatalysts and their energy conversion applications.

中文翻译:

将还原性光催化剂转化为用于水分解和 CO2 还原的全固态和直接 Z 型系统的概述

摘要 考虑到当前环境和能源问题日益严重,Z 型光催化系统的工程设计备受关注。其主要原因包括有效的氧化还原能力和有效的空间分离以及光生电荷载流子在传统异质结系统上的迁移。在此,我们突出了传统异质结系统的绊脚石,并启发了从液相到直接 Z 型光催化系统的几代 Z 型光催化系统。我们提供了选择还原型光催化剂作为 Z 型光催化系统的潜在追求者的实质性标准和选择方面。由于 Z 型光催化系统有效地实现了光生载流子的空间分离、活性物种的产生、广泛的光吸收和修正的氧化还原能力。我们专注于通过将还原型光催化剂与其他半导体材料耦合来全面说明所有固态和直接 Z 型光催化剂,并探索它们将太阳能有效转化为功能能的潜力。在此,我们旨在为选择用于 CO2 还原、水分解和固氮的 Z 型光催化剂提供深入和更新的标准。最后,本文总结了所有固态和直接 Z 型 Z 型光催化剂及其能量转换应用的未来前景和挑战。我们专注于通过将还原型光催化剂与其他半导体材料耦合来全面说明所有固态和直接 Z 型光催化剂,并探索它们将太阳能有效转化为功能能的潜力。在此,我们旨在为选择用于 CO2 还原、水分解和固氮的 Z 型光催化剂提供深入和更新的标准。最后,本文总结了所有固态和直接 Z 型 Z 型光催化剂及其能量转换应用的未来前景和挑战。我们专注于通过将还原型光催化剂与其他半导体材料耦合来全面说明所有固态和直接 Z 型光催化剂,并探索它们将太阳能有效转化为功能能的潜力。在此,我们旨在为选择用于 CO2 还原、水分解和固氮的 Z 型光催化剂提供深入和更新的标准。最后,本文总结了所有固态和直接 Z 型 Z 型光催化剂及其能量转换应用的未来前景和挑战。和固氮。最后,本文总结了所有固态和直接 Z 型 Z 型光催化剂及其能量转换应用的未来前景和挑战。和固氮。最后,本文总结了所有固态和直接 Z 型 Z 型光催化剂及其能量转换应用的未来前景和挑战。
更新日期:2021-01-01
down
wechat
bug