当前位置: X-MOL 学术Int. J. Therm. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Influence of co-current vapor flow on falling film over horizontal tube
International Journal of Thermal Sciences ( IF 4.5 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.ijthermalsci.2020.106614
Furqan Tahir , Abdelnasser Mabrouk , Muammer Koç

Abstract In the multi-effect evaporator (MED), the seawater falls on the outside of the tube, and the heat is transmitted from the steam flowing inside the tube. As a result, part of seawater evaporates and vapor is generated. Vapor flows in either co-current direction, cross direction or combination of both. The vapor flow exerts external force on falling film and affects film hydrodynamics, heat and mass transfer. This study focuses on analyzing the effects of co-current vapor flow on falling film distribution and hydrodynamics. A two-dimensional (2D) computational fluid dynamics model is developed and validated, in which sea water enters at 65 °C, which represents the maximum limit of current MED plant, and falls on a tube of 25.4 mm diameter from a 2 mm orifice. First, the liquid load is varied between 0.02 and 0.05 kg/(m·s), and its effects on the film thickness and the wetting time are calculated, presented and discussed. Afterwards, the impact of co-current vapor flow on film distribution, wetting time, minimum thickness and its location are quantified and examined by increasing the vapor velocity up to 6 m/s with 2 m/s intervals. It is found that the vapor flow significantly affects the film distribution on the upper half of the tube. The average film thickness and wetting time is reduced by 14.1% and 18.5%, respectively for the vapor velocity of 6 m/s compared to the no vapor flow, for 0.02 kg/(m·s). In addition, the minimum film thickness decreases by 23.1% for 0.02 kg/(m·s). The high decrement in film thickness can lead to dry patches and scale deposition in case of evaporation.

中文翻译:

并流蒸汽流动对水平管降膜的影响

摘要 在多效蒸发器(MED)中,海水落在管外,热量由管内流动的蒸汽传递。结果,部分海水蒸发并产生蒸汽。蒸气以并流方向、交叉方向或两者的组合流动。蒸汽流对降膜施加外力并影响膜流体动力学、传热和传质。本研究侧重于分析并流蒸汽流动对降膜分布和流体动力学的影响。开发并验证了二维 (2D) 计算流体动力学模型,其中海水在 65 °C 时进入,这代表了当前 MED 装置的最大极限,并从 2 mm 孔口落在直径 25.4 mm 的管子上. 首先,液体载荷在 0.02 到 0.05 kg/(m·s) 之间变化,并计算、展示和讨论了它对薄膜厚度和润湿时间的影响。然后,通过以 2 m/s 的间隔将蒸汽速度提高到 6 m/s,量化并检查并流蒸汽流动对薄膜分布、润湿时间、最小厚度及其位置的影响。发现蒸汽流显着影响管上半部的膜分布。6 m/s 的蒸汽速度与 0.02 kg/(m·s) 的无蒸汽流速相比,平均膜厚和润湿时间分别减少了 14.1% 和 18.5%。另外,0.02kg/(m·s)时,最小膜厚降低23.1%。在蒸发的情况下,薄膜厚度的大幅减少会导致干斑和水垢沉积。然后,通过以 2 m/s 的间隔将蒸汽速度提高到 6 m/s,量化并检查并流蒸汽流动对薄膜分布、润湿时间、最小厚度及其位置的影响。发现蒸汽流显着影响管上半部的膜分布。6 m/s 的蒸汽速度与 0.02 kg/(m·s) 的无蒸汽流速相比,平均膜厚和润湿时间分别减少了 14.1% 和 18.5%。另外,0.02kg/(m·s)时,最小膜厚降低23.1%。在蒸发的情况下,薄膜厚度的大幅减少会导致干斑和水垢沉积。然后,通过以 2 m/s 的间隔将蒸汽速度提高到 6 m/s,量化并检查并流蒸汽流动对薄膜分布、润湿时间、最小厚度及其位置的影响。发现蒸汽流显着影响管上半部的膜分布。6 m/s 的蒸汽速度与 0.02 kg/(m·s) 的无蒸汽流速相比,平均膜厚和润湿时间分别减少了 14.1% 和 18.5%。另外,0.02kg/(m·s)时,最小膜厚降低23.1%。在蒸发的情况下,薄膜厚度的大幅减少会导致干斑和水垢沉积。通过以 2 m/s 的间隔将蒸汽速度增加到 6 m/s,可以量化和检查最小厚度及其位置。发现蒸气流显着影响管上半部的膜分布。6 m/s 的蒸汽速度与 0.02 kg/(m·s) 的无蒸汽流速相比,平均膜厚和润湿时间分别减少了 14.1% 和 18.5%。另外,0.02kg/(m·s)时,最小膜厚降低23.1%。在蒸发的情况下,薄膜厚度的大幅减少会导致干斑和水垢沉积。通过以 2 m/s 的间隔将蒸汽速度增加到 6 m/s,可以量化和检查最小厚度及其位置。发现蒸汽流显着影响管上半部的膜分布。6 m/s 的蒸汽速度与 0.02 kg/(m·s) 的无蒸汽流速相比,平均膜厚和润湿时间分别减少了 14.1% 和 18.5%。另外,0.02kg/(m·s)时,最小膜厚降低23.1%。在蒸发的情况下,薄膜厚度的大幅减少会导致干斑和水垢沉积。分别对于 6 m/s 的蒸气速度与无蒸气流的 0.02 kg/(m·s) 进行比较。另外,0.02kg/(m·s)时,最小膜厚降低23.1%。在蒸发的情况下,薄膜厚度的大幅减少会导致干斑和水垢沉积。分别对于 6 m/s 的蒸气速度与无蒸气流的 0.02 kg/(m·s) 进行比较。另外,0.02kg/(m·s)时,最小膜厚降低23.1%。在蒸发的情况下,薄膜厚度的大幅减少会导致干斑和水垢沉积。
更新日期:2021-01-01
down
wechat
bug