当前位置: X-MOL 学术Fusion Eng. Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Development of an on-line sensor for hydrogen isotopes monitoring in flowing lithium at DONES
Fusion Engineering and Design ( IF 1.9 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.fusengdes.2020.112010
B. Garcinuño , D. Rapisarda , F.R. Urgorri , J. Herranz , M. Malo , J. Mollá , A. Ibarra

Abstract DONES (Demo Oriented Neutron Source) consists of an irradiation facility based in the nuclear stripping reactions that occur when one energetic deuteron beam impinges on a liquid lithium target flowing along an open channel. Since impurities enhance the erosion/corrosion effect, one of the challenging aspects on the development of the neutron source is the purity of the lithium. One group of impurities to be controlled are hydrogen isotopes in which the control of tritium as part of the produced impurities is mandatory due to its radiological risk. R&D activities are being performed for the development of different kinds of hydrogen sensors since there is no availability of commercial online monitors that could work under the lithium environment. As an extrapolation from other fusion applications, an online sensor based on the permeation against vacuum technique is proposed in this paper. The sensor design consists of a capillary tube made of a Pd/Ag membrane whose inner volume is subjected to vacuum promoting the H-isotopes permeation from the liquid. The vacuum line is connected to a mass spectrometer for the isotope detection. In addition, an experimental facility has been designed to experimentally demonstrate the feasibility of this monitor. It is made of a two-vessels system for lithium melting and H-isotopes detection. Furthermore, theoretical simulations have been carried out using the EcosimPro platform. Results show the expected behaviour of the sensor working under static conditions in the facility.

中文翻译:

开发用于 DOES 流动锂中氢同位素监测的在线传感器

摘要 DOES(演示定向中子源)由基于核剥离反应的辐照设施组成,当一个高能氘核束撞击沿开放通道流动的液态锂靶时,就会发生核剥离反应。由于杂质会增强侵蚀/腐蚀效应,因此开发中子源的挑战之一是锂的纯度。需要控制的一组杂质是氢同位素,其中氚作为产生的杂质的一部分由于其放射性风险而被强制控制。由于没有可在锂环境下工作的商业在线监测器,因此正在开展研发活动以开发不同种类的氢传感器。作为其他融合应用的推断,本文提出了一种基于真空渗透技术的在线传感器。传感器设计由一个由 Pd/Ag 膜制成的毛细管组成,其内部体积受到真空作用,促进 H 同位素从液体中渗透。真空管线连接到用于同位素检测的质谱仪。此外,还设计了一个实验设施,以通过实验证明该监视器的可行性。它由用于锂熔化和 H 同位素检测的两容器系统组成。此外,还使用 ​​EcosimPro 平台进行了理论模拟。结果显示了传感器在设施静态条件下工作的预期行为。传感器设计由一个由 Pd/Ag 膜制成的毛细管组成,其内部体积受到真空作用,促进 H 同位素从液体中渗透。真空管线连接到用于同位素检测的质谱仪。此外,还设计了一个实验设施来通过实验证明该监视器的可行性。它由用于锂熔化和 H 同位素检测的两容器系统组成。此外,还使用 ​​EcosimPro 平台进行了理论模拟。结果显示了传感器在设施静态条件下工作的预期行为。传感器设计由一个由 Pd/Ag 膜制成的毛细管组成,其内部体积受到真空作用,促进 H 同位素从液体中渗透。真空管线连接到用于同位素检测的质谱仪。此外,还设计了一个实验设施来通过实验证明该监视器的可行性。它由用于锂熔化和 H 同位素检测的两容器系统组成。此外,还使用 ​​EcosimPro 平台进行了理论模拟。结果显示了传感器在设施静态条件下工作的预期行为。已经设计了一个实验设施来通过实验证明该监视器的可行性。它由用于锂熔化和 H 同位素检测的两容器系统组成。此外,还使用 ​​EcosimPro 平台进行了理论模拟。结果显示了传感器在设施静态条件下工作的预期行为。已经设计了一个实验设施来通过实验证明该监视器的可行性。它由用于锂熔化和 H 同位素检测的两容器系统组成。此外,还使用 ​​EcosimPro 平台进行了理论模拟。结果显示了传感器在设施静态条件下工作的预期行为。
更新日期:2020-12-01
down
wechat
bug