当前位置: X-MOL 学术Forest Ecol. Manag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The effects of nutrient limitations on microbial respiration and organic matter decomposition in a Florida Spodosol as influenced by historical forest management practices
Forest Ecology and Management ( IF 3.7 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.foreco.2020.118592
Praveen Subedi , Eric J. Jokela , Jason G. Vogel , Rosvel Bracho , Kanika Sharma Inglett

Abstract Recent investigations on the mechanistic underpinnings for nutrient regulated organic matter decomposition suggest that micronutrients may limit microbial activity in nitrogen (N) enriched forest ecosystems. However, these nutrient limitations could be complex for managed pine plantations in the US South that received macro- and micronutrient fertilization and weed control treatments. Soils and pine litter from second rotation loblolly pine stands were incubated to study the legacy effects of long-term silvicultural treatments [30+ years − Untreated Carryover (C) − Control (CC), Fertilization (CF), Fertilization + Weed control (CFW), Weed control (CW)] on microbial respiration and organic matter decomposition. These legacy treatment effects were contrasted with soils and litter corresponding to the current rotation’s actively managed treatments that were the same as in the first rotation (Actively managed retreated- C, F, FW, W). In general, both past rotation (CF: 17.9 μg C g−1 soil day−1) and current rotation fertilizer treatments (F: 22.3 μg C g−1 soil day−1) resulted in higher microbial respiration rates compared to their respective controls (CC: 11.9 μg C g−1 soil day−1; C: 12.5 μg C g−1 soil day−1), which likely reflected an inherently higher soil carbon content. Carbon normalized microbial respiration rates during the incubation period followed exponential decay patterns, with lower decay rates in fertilized soils compared to the average among treatments. Furthermore, N + phosphorus (P) additions suppressed microbial respiration in the CF and F treatments, but accelerated it in the CC and C treatments. This observation suggests that during the early stages of decomposition, N and P were limiting to microorganisms in those soils without a silvicultural treatment history. Positive microbial respiration response to added Cu for the CC and C, and added Mn for the CC, C, and W treatments suggested micronutrient limitations to microbial decomposition processes. For soils without a fertilization history, Mn peroxidase activity response to Mn addition levels followed the trend: high level > low level = No addition (CC and CW: p = 0.0032; C and W: p

中文翻译:

受历史森林管理实践的影响,营养限制对佛罗里达 Spodosol 中微生物呼吸和有机物质分解的影响

摘要 最近对营养调节的有机物质分解机制基础的研究表明,微量营养素可能会限制富含氮 (N) 的森林生态系统中的微生物活动。然而,这些营养限制对于美国南部接受大量和微量营养素施肥和杂草控制处理的管理松树种植园来说可能很复杂。对来自第二轮火炬松林分的土壤和松树凋落物进行孵化,以研究长期造林处理的遗留影响 [30 年以上 - 未经处理的遗留物 (C) - 控制 (CC)、施肥 (CF)、施肥 + 杂草控制 (CFW) ), 杂草控制 (CW)] 对微生物呼吸和有机物分解的影响。这些传统处理效果与当前轮作的主动管理处理相对应的土壤和凋落物形成对比,这些处理与第一轮轮作相同(主动管理的撤退-C、F、FW、W)。一般来说,过去轮作(CF:17.9 μg C g-1 土壤第-1 天)和当前轮作肥料处理(F:22.3 μg C g-1 土壤第-1 天)与各自的对照相比导致更高的微生物呼吸速率(CC:11.9 μg C g−1 土壤 day−1;C:12.5 μg C g−1 土壤 day−1),这可能反映了土壤碳含量固有的较高。潜伏期碳标准化微生物呼吸率遵循指数衰减模式,与处理之间的平均值相比,受精土壤中的衰减率较低。此外,N + 磷 (P) 添加抑制了 CF 和 F 处理中的微生物呼吸,但在 CC 和 C 处理中加速了它。这一观察结果表明,在分解的早期阶段,N 和 P 仅限于那些没有造林处理历史的土壤中的微生物。微生物对 CC 和 C 添加 Cu 以及 CC、C 和 W 处理添加 Mn 的积极微生物呼吸反应表明微量营养素对微生物分解过程的限制。对于没有施肥历史的土壤,锰过氧化物酶活性对锰添加水平的响应遵循以下趋势:高水平 > 低水平 = 不添加(CC 和 CW:p = 0.0032;C 和 W:p N 和 P 仅限于那些没有造林处理历史的土壤中的微生物。微生物对 CC 和 C 添加 Cu 以及 CC、C 和 W 处理添加 Mn 的积极微生物呼吸反应表明微量营养素对微生物分解过程的限制。对于没有施肥历史的土壤,Mn 过氧化物酶活性对 Mn 添加水平的响应遵循以下趋势:高水平 > 低水平 = 不添加(CC 和 CW:p = 0.0032;C 和 W:p N 和 P 仅限于那些没有造林处理历史的土壤中的微生物。微生物对 CC 和 C 添加 Cu 以及 CC、C 和 W 处理添加 Mn 的积极微生物呼吸反应表明微量营养素对微生物分解过程的限制。对于没有施肥历史的土壤,锰过氧化物酶活性对锰添加水平的响应遵循以下趋势:高水平 > 低水平 = 不添加(CC 和 CW:p = 0.0032;C 和 W:p
更新日期:2021-01-01
down
wechat
bug