当前位置: X-MOL 学术Comp. Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An MD study of the polymer–polymer adhesion via connector chains: some aspects of the competition between bulk dissipation in the interphase and pull-out of interface-connecting molecules
Computational Materials Science ( IF 3.1 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.commatsci.2020.110048
Mathieu Solar

Abstract Atomistic simulation approach was used to analyze the separation behavior of polymer–polymer interfaces. This was achieved using coarse-grained molecular dynamics (MD) simulations of some connector chains embedded in two adjacent polymer entangled melts. To separate the contribution of polymer molecules pull-out from the micro-bulk dissipation in the viscoplastic interphase, surrounding the surface of separation, two kinds of simulations were considered: (a), simulations of the pull-out mechanism, where the extraction of the connectors out of the melts takes place through a complex mechanism of forced reptation only; (b), simulations of the full debonding process where the micro-bulk dissipation contributes to the overall crack opening and can skew the description of the interface separation by pure connector molecules pull-out. From the MD simulation results, some relevant parameters (e.g., a cohesive strength or an adhesion energy) of the separation behavior of the interface being modelized were extracted. In addition, one was able to separate quantitatively connector pull-out from micro-bulk dissipation (in the surrounding bulk region of the interface). This means that we were able to emphasize: (i) how the straining divides into interface opening and bulk deformation and (ii), how the macroscopic opening rate diffuses throughout the melts and the interface opening rate, since the mechanical behavior of polymers is strain-rate dependent. A comparison between two kinds of MD simulations, where a system is stretched along one direction, is shortly discussed as a necessary prelude to future investigations.

中文翻译:

通过连接器链对聚合物-聚合物粘附的 MD 研究:相间体耗散与界面连接分子拉出之间竞争的某些方面

摘要 采用原子模拟方法分析聚合物-聚合物界面的分离行为。这是通过对嵌入两个相邻聚合物缠结熔体中的一些连接器链进行粗粒分子动力学 (MD) 模拟来实现的。为了将聚合物分子拉出的贡献与粘塑性界面中的微体积耗散分开,围绕分离表面,考虑了两种模拟:(a),拉出机制的模拟,其中提取熔体中的连接器仅通过复杂的强制蠕动机制发生;(b),全脱粘过程的模拟,其中微体积耗散有助于整体裂纹的打开,并且可以通过纯连接器分子拉出来扭曲界面分离的描述。从 MD 模拟结果中,提取了正在建模的界面分离行为的一些相关参数(例如,内聚强度或粘附能)。此外,还能够定量地将连接器拉出与微体积耗散(在界面的周围体积区域中)分开。这意味着我们能够强调:(i)应变如何分为界面开口和体积变形以及(ii)宏观开口率如何在整个熔体中扩散和界面开口率,因为聚合物的机械行为是应变-率依赖。将系统沿一个方向拉伸的两种 MD 模拟之间的比较将作为未来研究的必要前奏进行简短讨论。被建模的界面的分离行为的内聚强度或粘附能)被提取出来。此外,还能够定量地将连接器拉出与微体积耗散(在界面的周围体积区域中)分开。这意味着我们能够强调:(i)应变如何分为界面开口和体积变形以及(ii)宏观开口率如何在整个熔体中扩散和界面开口率,因为聚合物的机械行为是应变-率依赖。将系统沿一个方向拉伸的两种 MD 模拟之间的比较将作为未来研究的必要前奏进行简短讨论。被建模的界面的分离行为的内聚强度或粘附能)被提取出来。此外,还能够定量地将连接器拉出与微体积耗散(在界面的周围体积区域中)分开。这意味着我们能够强调:(i)应变如何分为界面开口和体积变形以及(ii)宏观开口率如何在整个熔体中扩散和界面开口率,因为聚合物的机械行为是应变-率依赖。将系统沿一个方向拉伸的两种 MD 模拟之间的比较将作为未来研究的必要前奏进行简短讨论。一种能够定量地将连接器拉出与微体积耗散(在界面的周围体积区域中)分开。这意味着我们能够强调:(i)应变如何分为界面开口和体积变形以及(ii)宏观开口率如何在整个熔体中扩散和界面开口率,因为聚合物的机械行为是应变-率依赖。将系统沿一个方向拉伸的两种 MD 模拟之间的比较将作为未来研究的必要前奏进行简短讨论。一种能够定量地将连接器拉出与微体积耗散(在界面的周围体积区域中)分开。这意味着我们能够强调:(i)应变如何分为界面开口和体积变形以及(ii)宏观开口率如何在整个熔体中扩散和界面开口率,因为聚合物的机械行为是应变-率依赖。将系统沿一个方向拉伸的两种 MD 模拟之间的比较将作为未来研究的必要前奏进行简短讨论。宏观开口率如何在整个熔体中扩散以及界面开口率,因为聚合物的机械行为取决于应变率。将系统沿一个方向拉伸的两种 MD 模拟之间的比较将作为未来研究的必要前奏进行简短讨论。宏观开口率如何在整个熔体中扩散以及界面开口率,因为聚合物的机械行为取决于应变率。将系统沿一个方向拉伸的两种 MD 模拟之间的比较将作为未来研究的必要前奏进行简短讨论。
更新日期:2021-01-01
down
wechat
bug