当前位置: X-MOL 学术Catal. Today › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Role of geometry, charge and fluxionality of clusters in CO2 activation on supported sub-nanometer metal clusters: The case of Cu tetramers on pristine and O-terminated MXene
Catalysis Today ( IF 5.2 ) Pub Date : 2020-09-18 , DOI: 10.1016/j.cattod.2020.09.002
Unmesh Mondal , Prasenjit Ghosh

Reduction of CO2 to useful chemicals using supported few atom copper clusters has been an active area of research. The first step in this process is chemisorption and reduction of CO2 to CO2δ. Previous studies have shown that the ease of chemisorption depends on the cluster geometry and charge. In an effort to elucidate the role of cluster-support interactions and thereby cluster geometry, charge on cluster on CO2 chemisorption, in this work, using density functional theory based calculations, we have studied the physisorption and chemisorbtion of CO2 on Cu tetramers supported on pristine and O-terminated Ti2C MXene. Our calculations show that for CO2 to exhibit exothermic adsorption, the cluster should (a) wet the support thereby exposing all the Cu atoms to the approaching CO2 molecule, (b) be preferably positively charged with Cu atoms present in more than one oxidation state and (c) be fluxional on the support. Our nudged elastic band based calculations show that the transition from physisorbed to chemisorbed CO2 is an activated process. Amongst the systems considered in this study, the activation barrier is usually low except on the tetrahedral cluster on the oxygen terminated Ti2C support.



中文翻译:

簇的几何形状,电荷和通量在支持的亚纳米金属簇上的CO 2活化中的作用:原始和O封端的MXene上的Cu四聚体的情况

使用支持的少量原子铜簇将CO 2还原为有用的化学物质一直是研究的活跃领域。此过程的第一步是化学吸附并将CO 2还原为CO2个δ-。先前的研究表明,化学吸附的难易程度取决于团簇的几何形状和电荷。为了阐明簇-载体相互作用的作用,从而阐明簇的几何形状,簇对CO 2化学吸附的电荷,在这项工作中,我们使用基于密度泛函理论的计算方法,研究了负载的Cu四聚体对CO 2的物理吸附和化学吸附。在原始的和O端接的Ti 2 C MXene上。我们的计算表明,要使CO 2表现出放热吸附,团簇应(a)润湿载体,从而将所有Cu原子暴露于接近的CO 2中。在分子中,(b)优选以多于一种氧化态存在的Cu原子带正电荷,并且(c)在载体上是通量的。我们基于微带的微带计算表明,从物理吸附到化学吸附的CO 2的转变是一个激活的过程。在这项研究中考虑的系统中,除了在氧封端的Ti 2 C载体上的四面体簇上,活化势垒通常很低。

更新日期:2020-09-18
down
wechat
bug