当前位置: X-MOL 学术Bioelectrochemistry › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Research on the electrocatalytic reduction of CO2 by microorganisms with a nano-titanium carburizing electrode
Bioelectrochemistry ( IF 4.8 ) Pub Date : 2020-09-19 , DOI: 10.1016/j.bioelechem.2020.107672
Ning Hu 1 , Li Wang 1 , MengGen Liao 1 , MengLan Yin 1
Affiliation  

The reduction of CO2 to organics using microbial electrosynthesis (MES) is currently a popular research direction in the environmental field. In this study, we evaluated the effect of the electrode material on the production of organics from CO2 in microbial electrosynthesis with a mixed-culture biocathode. The electrode material is an important factor influencing electron transfer, since it directly affects the efficiency of CO2 reduction. In this study, we compared the performance of a graphite electrode and a metal-based carbon hybrid material electrode for the electro-reduction of CO2. The cathode potential was set to −0.8 V (vs Ag/AgCl). When the cathode material was changed from a graphite electrode to a nano-titanium carburizing electrode, the current density of MES increased from 1.66 ± 0.2 A·m−2 to 2.75 ± 0.2 A·m−2, acetate accumulation increased from 127 mg/L to 234 mg/L, butyrate accumulation increased from 46 mg/L to 86.5 mg/L, and the total electron recovery of MES increased to nearly 70%. The results show that improving electrode performance can effectively improve the efficiency of MES for reducing CO2. Metal-based carbon hybrid materials have good biological affinity and stability and also have good electrochemical performance.



中文翻译:

纳米钛渗碳电极对微生物电催化还原CO 2的研究

利用微生物电合成(MES)将CO 2还原为有机物是当前在环境领域中流行的研究方向。在这项研究中,我们评估了电极材料对混合培养生物阴极在微生物电合成中由CO 2产生有机物的影响。电极材料是影响电子转移的重要因素,因为它直接影响CO 2还原效率。在这项研究中,我们比较了石墨电极和金属基碳杂化材料电极在电还原CO 2方面的性能。阴极电位设定为-0.8V(vs Ag / AgCl)。当正极材料从石墨电极变为纳米钛渗碳电极时,MES的电流密度从1.66±0.2 A·m -2增加到2.75±0.2 A·m -2,乙酸盐累积量从127 mg /升至234 mg / L,丁酸积累从46 mg / L增加至86.5 mg / L,MES的总电子回收率提高至近70%。结果表明,提高电极性能可以有效提高MES降低CO 2的效率。金属基碳杂化材料具有良好的生物亲和力和稳定性,并且还具有良好的电化学性能。

更新日期:2020-10-02
down
wechat
bug