当前位置: X-MOL 学术Czechoslov. Math. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The $p$-nilpotency of finite groups with some weakly pronormal subgroups
Czechoslovak Mathematical Journal ( IF 0.4 ) Pub Date : 2020-02-21 , DOI: 10.21136/cmj.2020.0546-18
Jianjun Liu , Jian Chang , Guiyun Chen

For a finite group G and a fixed Sylow p-subgroup P of G, Ballester-Bolinches and Guo proved in 2000 that G is p-nilpotent if every element of P ∩ G′ with order p lies in the center of NG(P) and when p = 2, either every element of P ∩ G′ with order 4 lies in the center of NG(P) or P is quaternion-free and NG(P) is 2-nilpotent. Asaad introduced weakly pronormal subgroup of G in 2014 and proved that G is p-nilpotent if every element of P with order p is weakly pronormal in G and when p = 2, every element of P with order 4 is also weakly pronormal in G. These results generalized famous Ito’s Lemma. We are motivated to generalize Ballester-Bolinches and Guo’s Theorem and Asaad’s Theorem. It is proved that if p is the smallest prime dividing the order of a group G and P, a Sylow p-subgroup of G, then G is p-nilpotent if G is S4-free and every subgroup of order p in P ∩ Px ∩ $$G^{\mathfrak{N}_{\mathfrak{p}}}$$ is weakly pronormal in NG(P) for all x ∈ GNG(P), and when p = 2, P is quaternion-free, where $$G^{\mathfrak{N}_{\mathfrak{p}}}$$ is the p-nilpotent residual of G.

中文翻译:

具有一些弱前正定子群的有限群的 $p$-nilpotency

对于有限群 G 和 G 的固定 Sylow p-子群 P,Ballester-Bolinches 和 Guo 在 2000 年证明,如果 P ∩ G' 的每个元素都位于 NG(P) 的中心,则 G 是 p 幂零的当 p = 2 时,P ∩ G' 的每个 4 阶元素都位于 NG(P) 的中心,或者 P 是无四元数且 NG(P) 是 2 幂零的。Asaad 于 2014 年引入了 G 的弱顺式子群,并证明了如果 P 中 p 阶的每个元素在 G 中都弱顺式,并且当 p = 2 时,P 中的每个 4 阶元素也在 G 中弱顺式,则 G 是 p 幂零的。这些结果概括了著名的伊藤引理。我们有动力推广 Ballester-Bolinches 和郭的定理以及阿萨德的定理。证明如果 p 是除群 G 和 P 的阶的最小素数,则是 G 的 Sylow p-子群,
更新日期:2020-02-21
down
wechat
bug