当前位置: X-MOL 学术Comput. Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechanical stimulation of cell microenvironment for cardiac muscle tissue regeneration: a 3D in-silico model
Computational Mechanics ( IF 4.1 ) Pub Date : 2020-07-31 , DOI: 10.1007/s00466-020-01882-6
Pau Urdeitx , Mohamed H. Doweidar

The processes in which cardiac cells are reorganized for tissue regeneration is still unclear. It is a complicated process that is orchestrated by many factors such as mechanical, chemical, thermal, and/or electrical cues. Studying and optimizing these conditions in-vitro is complicated and time costly. In such cases, in-silico numerical simulations can offer a reliable solution to predict and optimize the considered conditions for the cell culture process. For this aim, a 3D novel and enhanced numerical model has been developed to study the effect of the mechanical properties of the extracellular matrix (ECM) as well as the applied external forces in the process of the cell differentiation and proliferation for cardiac muscle tissue regeneration. The model has into account the essential cellular processes such as migration, cell–cell interaction, cell–ECM interaction, differentiation, proliferation and/or apoptosis. It has employed to study the initial stages of cardiac muscle tissue formation within a wide range of ECM stiffness (8–50 kPa). The results show that, after cell culture within a free surface ECM, cells tend to form elongated aggregations in the ECM center. The formation rate, as well as the aggregation morphology, have been found to be a function of the ECM stiffness and the applied external force. Besides, it has been found that the optimum ECM stiffness for cardiovascular tissue regeneration is in the range of 29–39 kPa, combined with the application of a mechanical stimulus equivalent to deformations of 20–25%.

中文翻译:

用于心肌组织再生的细胞微环境的机械刺激:3D 计算机模拟模型

心脏细胞为组织再生而重组的过程仍不清楚。这是一个复杂的过程,由许多因素协调,例如机械、化学、热和/或电线索。在体外研究和优化这些条件是复杂且耗时的。在这种情况下,计算机内数值模拟可以提供可靠的解决方案来预测和优化细胞培养过程的考虑条件。为此,开发了一种新颖的增强型 3D 数值模型来研究细胞外基质 (ECM) 的机械特性以及在细胞分化和增殖过程中施加的外力对心肌组织再生的影响. 该模型考虑了基本的细胞过程,如迁移、细胞间相互作用、细胞-ECM 相互作用、分化、增殖和/或凋亡。它已用于研究大范围 ECM 刚度 (8-50 kPa) 内心肌组织形成的初始阶段。结果表明,在自由表面 ECM 内进行细胞培养后,细胞倾向于在 ECM 中心形成细长的聚集体。已发现形成速率以及聚集形态是 ECM 刚度和施加的外力的函数。此外,已经发现心血管组织再生的最佳 ECM 刚度在 29-39 kPa 的范围内,并结合应用相当于 20-25% 变形的机械刺激。它已用于研究大范围 ECM 刚度 (8-50 kPa) 内心肌组织形成的初始阶段。结果表明,在自由表面 ECM 内进行细胞培养后,细胞倾向于在 ECM 中心形成细长的聚集体。已发现形成速率以及聚集形态是 ECM 刚度和施加的外力的函数。此外,已经发现心血管组织再生的最佳 ECM 刚度在 29-39 kPa 的范围内,并结合应用相当于 20-25% 变形的机械刺激。它已用于研究大范围 ECM 刚度 (8-50 kPa) 内心肌组织形成的初始阶段。结果表明,在自由表面 ECM 内进行细胞培养后,细胞倾向于在 ECM 中心形成细长的聚集体。已发现形成速率以及聚集形态是 ECM 刚度和施加的外力的函数。此外,已经发现心血管组织再生的最佳 ECM 刚度在 29-39 kPa 的范围内,并结合应用相当于 20-25% 变形的机械刺激。已被发现是 ECM 刚度和施加的外力的函数。此外,已经发现心血管组织再生的最佳 ECM 刚度在 29-39 kPa 的范围内,并结合应用相当于 20-25% 变形的机械刺激。已被发现是 ECM 刚度和施加的外力的函数。此外,已经发现心血管组织再生的最佳 ECM 刚度在 29-39 kPa 的范围内,并结合应用相当于 20-25% 变形的机械刺激。
更新日期:2020-07-31
down
wechat
bug