当前位置: X-MOL 学术Clim. Dyn. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Projecting the future vegetation–climate system over East Asia and its RCP-dependence
Climate Dynamics ( IF 3.8 ) Pub Date : 2020-08-18 , DOI: 10.1007/s00382-020-05411-2
Weiguang Liu , Guiling Wang , Miao Yu , Haishan Chen , Yelin Jiang , Meijian Yang , Ying Shi

The future vegetation–climate system over East Asia, as well as its dependence on Representative Concentration Pathways (RCPs), is investigated using a regional climate–vegetation model driven with boundary conditions from Flexible Global Ocean–Atmosphere–Land System Model: Grid-point Version 2. Over most of the region, due to the rising CO2 concentration and climate changes, the model projects greater vegetation density (leaf area index) and gradual shifts of vegetation type from bare ground to grass or from grass to trees; the projected spatial extent of the vegetation shift increases from RCP2.6 to RCP8.5. Abrupt shifts are projected under RCP8.5 over northeast China (with grass replacing boreal needleleaf evergreen trees due to heat stress) and India (with tropical deciduous trees replacing grass due to increased water availability). The impact of vegetation feedback on future precipitation is relatively weak, while its impact on temperature is more evident, especially during DJF over northeast China and India with differing mechanisms. In northeast China, the projected forest loss induces a cooling through increased albedo, and daytime high temperature (Tmax) is influenced more than nighttime low temperature (Tmin); in India, increased vegetation cover induces an evaporative cooling that outweighs the warming effect of an albedo decrease in DJF, leading to a weaker impact on Tmax than on Tmin. Based on a single model, the qualitative aspects of these results may hold while quantitative assessment will benefit from a follow-up regional model ensemble study driven by multiple general circulation models.

更新日期:2020-09-20
down
wechat
bug