当前位置: X-MOL 学术Mol. Syst. Des. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multiscale molecular modelling for the design of nanostructured polymer systems: industrial applications
Molecular Systems Design & Engineering ( IF 3.2 ) Pub Date : 2020-09-17 , DOI: 10.1039/d0me00109k
Maurizio Fermeglia 1, 2, 3, 4 , Andrea Mio 1, 2, 3, 4 , Suzana Aulic 1, 2, 3, 4 , Domenico Marson 1, 2, 3, 4 , Erik Laurini 1, 2, 3, 4 , Sabrina Pricl 1, 2, 3, 4, 5
Affiliation  

One of the major goals of computational materials science is the rapid and accurate prediction of properties of new materials. In order to design new materials and compositions for specific, high-performance applications, it is essential to rely on predictive tools for the estimation of the desired properties before material preparation, characterization and processing. In the future, new materials and systems will be characterized by progressively higher degrees of complexity, due to the strong relationship between nanotechnology, biotechnology, computer science and cognitive disciplines. However, computer power and simulation algorithms are also quickly evolving, opening new avenues for novel material and system design based on virtual (aka in silico) experiments. Notwithstanding the great advances achieved in the simulation of structural, thermal, mechanical and transport properties of materials at the macroscopic level, the accurate property prediction for complex nanostructured materials remains a critical issue in the material design strategy. This hurdle arises from the strong dependence of the material properties on the underlying nanostructure. Atomistic simulations based on molecular dynamics or Monte Carlo methods allow such structure–property relationships to be derived already for systems of noticeable size and time scales; yet, the study of highly complex systems (e.g., polymer nanocomposites and self-assembled nanomaterials) is still out of current reach at such a fine level of detail. Indeed, the fast advancement of high-performance computing has already expanded these time/scale windows, and the upcoming advent of hexascale and/or quantum-based computers will indeed further contribute to this expansion; yet, the investigation of many critical phenomena will remain inaccessible to atomistic-based simulations. To circumvent this limitation, multiscale simulation techniques have been developed to create a seamless bridge across different time/scale domains (from electronic to continuum methods), thereby providing reliable predictive tools to design engineers. Accordingly, in this review work we present a selection of case studies based on our own experience in multiscale molecular modeling of nanostructured, complex systems of industrial interest. The main goal of this objective is to show how multiscale in silico experiments in molecular systems design and engineering is at the same time theoretically sound and mature enough for its full exploitation.

中文翻译:

用于设计纳米结构聚合物系统的多尺度分子建模:工业应用

计算材料科学的主要目标之一是快速准确地预测新材料的性能。为了为特定的高性能应用设计新的材料和成分,必须在材料制备,表征和加工之前依靠预测工具来估算所需的性能。未来,由于纳米技术,生物技术,计算机科学和认知学科之间的紧密联系,新材料和系统的复杂性将逐步提高。但是,计算机功能和仿真算法也在迅速发展,为基于虚拟(又名硅技术)的新型材料和系统设计开辟了新途径。)实验。尽管在宏观上模拟材料的结构,热,机械和传输特性方面取得了巨大进步,但是复杂纳米结构材料的准确特性预测仍然是材料设计策略中的关键问题。该障碍是由于材料特性对下面的纳米结构的强烈依赖性而引起的。基于分子动力学或蒙特卡洛方法的原子模拟,已经为大小和时间尺度显着的系统推导了这种结构-性质关系。但是,研究高度复杂的系统(例如,聚合物纳米复合材料和自组装纳米材料)仍然无法达到如此精细的细节水平。实际上,高性能计算的快速发展已经扩展了这些时间/尺度窗口,即将到来的六尺度和/或基于量子的计算机的到来确实将进一步促进这种扩展。但是,基于原子的模拟仍无法进行许多关键现象的研究。为了避免这种局限性,已经开发了多尺度仿真技术来创建跨不同时域/尺度域(从电子方法到连续介质方法)的无缝桥,从而为设计工程师提供了可靠的预测工具。因此,在这项审查工作中,我们根据自己在纳米结构多尺度分子建模中的经验,提供了一系列案例研究,复杂的工业利益体系。这个目标的主要目标是展示多尺度分子系统设计和工程的计算机模拟实验中,从理论上讲,它已充分健全并可以充分利用。
更新日期:2020-10-14
down
wechat
bug