当前位置: X-MOL 学术Cereb. Cortex › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Predicting the fMRI Signal Fluctuation with Recurrent Neural Networks Trained on Vascular Network Dynamics.
Cerebral Cortex ( IF 3.7 ) Pub Date : 2020-09-17 , DOI: 10.1093/cercor/bhaa260
Filip Sobczak 1, 2 , Yi He 1, 3 , Terrence J Sejnowski 4, 5 , Xin Yu 1, 6
Affiliation  

Resting-state functional MRI (rs-fMRI) studies have revealed specific low-frequency hemodynamic signal fluctuations (<0.1 Hz) in the brain, which could be related to neuronal oscillations through the neurovascular coupling mechanism. Given the vascular origin of the fMRI signal, it remains challenging to separate the neural correlates of global rs-fMRI signal fluctuations from other confounding sources. However, the slow-oscillation detected from individual vessels by single-vessel fMRI presents strong correlation to neural oscillations. Here, we use recurrent neural networks (RNNs) to predict the future temporal evolution of the rs-fMRI slow oscillation from both rodent and human brains. The RNNs trained with vessel-specific rs-fMRI signals encode the unique brain oscillatory dynamic feature, presenting more effective prediction than the conventional autoregressive model. This RNN-based predictive modeling of rs-fMRI datasets from the Human Connectome Project (HCP) reveals brain state-specific characteristics, demonstrating an inverse relationship between the global rs-fMRI signal fluctuation with the internal default-mode network (DMN) correlation. The RNN prediction method presents a unique data-driven encoding scheme to specify potential brain state differences based on the global fMRI signal fluctuation, but not solely dependent on the global variance.

中文翻译:

用血管网络动力学训练的循环神经网络预测 fMRI 信号波动。

静息态功能 MRI (rs-fMRI) 研究揭示了大脑中特定的低频血流动力学信号波动 (<0.1 Hz),这可能与通过神经血管耦合机制的神经元振荡有关。鉴于 fMRI 信号的血管来源,将全局 rs-fMRI 信号波动的神经相关性与其他混杂来源区分开来仍然具有挑战性。然而,单血管 fMRI 从单个血管检测到的缓慢振荡与神经振荡有很强的相关性。在这里,我们使用循环神经网络 (RNN) 来预测来自啮齿动物和人类大脑的 rs-fMRI 慢振荡的未来时间演变。用血管特异性 rs-fMRI 信号训练的 RNN 编码了独特的大脑振荡动态特征,提供比传统的自回归模型更有效的预测。这种来自人类连接组计划 (HCP) 的 rs-fMRI 数据集的基于 RNN 的预测建模揭示了大脑状态特定的特征,证明了全局 rs-fMRI 信号波动与内部默认模式网络 (DMN) 相关性之间的反比关系。RNN 预测方法提出了一种独特的数据驱动编码方案,以基于全局 fMRI 信号波动来指定潜在的大脑状态差异,但不仅仅依赖于全局方差。展示了全局 rs-fMRI 信号波动与内部默认模式网络 (DMN) 相关性之间的反比关系。RNN 预测方法提出了一种独特的数据驱动编码方案,以基于全局 fMRI 信号波动来指定潜在的大脑状态差异,但不仅仅依赖于全局方差。展示了全局 rs-fMRI 信号波动与内部默认模式网络 (DMN) 相关性之间的反比关系。RNN 预测方法提出了一种独特的数据驱动编码方案,以基于全局 fMRI 信号波动来指定潜在的大脑状态差异,但不仅仅依赖于全局方差。
更新日期:2020-09-17
down
wechat
bug