当前位置: X-MOL 学术Micromachines › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microfabrication Process-Driven Design, FEM Analysis and System Modeling of 3-DoF Drive Mode and 2-DoF Sense Mode Thermally Stable Non-Resonant MEMS Gyroscope.
Micromachines ( IF 3.0 ) Pub Date : 2020-09-17 , DOI: 10.3390/mi11090862
Syed Ali Raza Bukhari 1 , Muhammad Mubasher Saleem 1, 2 , Umar Shahbaz Khan 1, 2 , Amir Hamza 1, 2 , Javaid Iqbal 1, 2 , Rana Iqtidar Shakoor 2, 3
Affiliation  

This paper presents microfabrication process-driven design of a multi-degree of freedom (multi-DoF) non-resonant electrostatic microelectromechanical systems (MEMS) gyroscope by considering the design constraints of commercially available low-cost and widely-used silicon-on-insulator multi-user MEMS processes (SOIMUMPs), with silicon as a structural material. The proposed design consists of a 3-DoF drive mode oscillator with the concept of addition of a collider mass which transmits energy from the drive mass to the passive sense mass. In the sense direction, 2-DoF sense mode oscillator is used to achieve dynamically-amplified displacement in the sense mass. A detailed analytical model for the dynamic response of MEMS gyroscope is presented and performance characteristics are validated through finite element method (FEM)-based simulations. The effect of operating air pressure and temperature variations on the air damping and resulting dynamic response is analyzed. The thermal stability of the design and corresponding effect on the mechanical and capacitive sensitivity, for an operating temperature range of −40 °C to 100 °C, is presented. The results showed that the proposed design is thermally stable, robust to environmental variations, and process tolerances with a wide operational bandwidth and high sensitivity. Moreover, a system-level model of the proposed gyroscope and its integration with the sensor electronics is presented to estimate the voltage sensitivity under the constraints of the readout electronic circuit.

中文翻译:

3自由度驱动模式和2自由度感测模式热稳定非谐振MEMS陀螺仪的微细加工驱动设计,有限元分析和系统建模。

本文考虑了市售低成本和广泛使用的绝缘体上硅的设计约束条件,提出了多自由度(multi-DoF)非谐振静电微机电系统(MEMS)陀螺仪的微细加工驱动设计以硅为结构材料的多用户MEMS工艺(SOIMUMP)。所提出的设计包括一个3自由度驱动模式振荡器,其概念是增加一个对撞质量,该对撞质量将能量从驱动质量传输到无源传感质量。在感测方向上,使用2-DoF感测模式振荡器来实现感测质量中的动态放大位移。提出了MEMS陀螺仪动态响应的详细分析模型,并通过基于有限元方法(FEM)的仿真验证了性能特征。分析了工作气压和温度变化对空气阻尼的影响以及由此产生的动态响应。给出了工作温度范围为−40°C至100°C的设计的热稳定性以及对机械和电容灵敏度的相应影响。结果表明,所提出的设计是热稳定的,对环境变化具有鲁棒性,并且具有宽工作带宽和高灵敏度的工艺公差。此外,提出了所提出的陀螺仪的系统级模型及其与传感器电子设备的集成,以在读出电子电路的约束下估计电压灵敏度。给出了工作温度范围为−40°C至100°C的设计的热稳定性以及对机械和电容灵敏度的相应影响。结果表明,所提出的设计是热稳定的,对环境变化具有鲁棒性,并且具有宽工作带宽和高灵敏度的工艺公差。此外,提出了所提出的陀螺仪的系统级模型及其与传感器电子设备的集成,以在读出电子电路的约束下估计电压灵敏度。给出了工作温度范围为−40°C至100°C的设计的热稳定性以及对机械和电容灵敏度的相应影响。结果表明,所提出的设计是热稳定的,对环境变化具有鲁棒性,并且具有宽工作带宽和高灵敏度的工艺公差。此外,提出了所提出的陀螺仪的系统级模型及其与传感器电子设备的集成,以在读出电子电路的约束下估计电压灵敏度。具有宽工作带宽和高灵敏度的工艺公差。此外,提出了所提出的陀螺仪的系统级模型及其与传感器电子设备的集成,以在读出电子电路的约束下估计电压灵敏度。具有宽操作带宽和高灵敏度的工艺公差。此外,提出了所提出的陀螺仪的系统级模型及其与传感器电子设备的集成,以在读出电子电路的约束下估计电压灵敏度。
更新日期:2020-09-18
down
wechat
bug