当前位置: X-MOL 学术npj Quantum Inform. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Spectrally reconfigurable quantum emitters enabled by optimized fast modulation
npj Quantum Information ( IF 6.6 ) Pub Date : 2020-09-17 , DOI: 10.1038/s41534-020-00310-0
Daniil M. Lukin , Alexander D. White , Rahul Trivedi , Melissa A. Guidry , Naoya Morioka , Charles Babin , Öney O. Soykal , Jawad Ul-Hassan , Nguyen Tien Son , Takeshi Ohshima , Praful K. Vasireddy , Mamdouh H. Nasr , Shuo Sun , Jean-Philippe W. MacLean , Constantin Dory , Emilio A. Nanni , Jörg Wrachtrup , Florian Kaiser , Jelena Vučković

The ability to shape photon emission facilitates strong photon-mediated interactions between disparate physical systems, thereby enabling applications in quantum information processing, simulation and communication. Spectral control in solid state platforms such as color centers, rare earth ions, and quantum dots is particularly attractive for realizing such applications on-chip. Here we propose the use of frequency-modulated optical transitions for spectral engineering of single photon emission. Using a scattering-matrix formalism, we find that a two-level system, when modulated faster than its optical lifetime, can be treated as a single-photon source with a widely reconfigurable photon spectrum that is amenable to standard numerical optimization techniques. To enable the experimental demonstration of this spectral control scheme, we investigate the Stark tuning properties of the silicon vacancy in silicon carbide, a color center with promise for optical quantum information processing technologies. We find that the silicon vacancy possesses excellent spectral stability and tuning characteristics, allowing us to probe its fast modulation regime, observe the theoretically-predicted two-photon correlations, and demonstrate spectral engineering. Our results suggest that frequency modulation is a powerful technique for the generation of new light states with unprecedented control over the spectral and temporal properties of single photons.



中文翻译:

通过优化的快速调制实现光谱可重新配置的量子发射器

整形光子发射的能力促进了不同物理系统之间强大的光子介导的相互作用,从而使它能够应用于量子信息处理,仿真和通信。固态平台(例如色心,稀土离子和量子点)中的光谱控制对于在芯片上实现此类应用特别有吸引力。在这里,我们建议将调频光学跃迁用于单光子发射的光谱工程。使用散射矩阵形式主义,我们发现,当以比其光学寿命更快的速度进行调制时,可以将两级系统视为具有可广泛重构的光子光谱的单光子源,该光子谱可用于标准数值优化技术。为了能够对该频谱控制方案进行实验演示,我们研究了碳化硅中硅空位的Stark调谐特性,这是一个具有光量子信息处理技术前景的色心。我们发现硅空位具有出色的光谱稳定性和调谐特性,从而使我们能够探究其快速调制机制,观察理论上预测的双光子相关性,并演示光谱工程。我们的结果表明,频率调制是一种强大的技术,可通过对单个光子的光谱和时间特性进行空前的控制来生成新的光态。我们发现硅空位具有出色的光谱稳定性和调谐特性,从而使我们能够探究其快速调制机制,观察理论上预测的双光子相关性,并演示光谱工程。我们的结果表明,频率调制是一种强大的技术,可通过对单个光子的光谱和时间特性进行空前的控制来生成新的光态。我们发现硅空位具有出色的光谱稳定性和调谐特性,从而使我们能够探究其快速调制机制,观察理论上预测的双光子相关性,并演示光谱工程。我们的结果表明,频率调制是一种强大的技术,可通过对单个光子的光谱和时间特性进行空前的控制来生成新的光态。

更新日期:2020-09-18
down
wechat
bug