当前位置: X-MOL 学术Comput. Method Biomech. Biomed. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigation of airflow at different activity conditions in a realistic model of human upper respiratory tract
Computer Methods in Biomechanics and Biomedical Engineering ( IF 1.7 ) Pub Date : 2020-09-17 , DOI: 10.1080/10255842.2020.1819256
Reza Tabe 1 , Roohollah Rafee 1 , Mohammad Sadegh Valipour 1 , Goodarz Ahmadi 2
Affiliation  

In the present study, the turbulent flows inside a realistic model of the upper respiratory tract were investigated numerically and experimentally. The airway model included the geometrical details of the oral cavity to the end of the trachea that was based on a series of CT-scan images. The topological data of the respiratory tract were used for generating the computational model as well as the 3D-printed model that was used in the experimental pressure drop measurement. Different airflow rates of 30, 45, and 60 L/min, which correspond to the light, semi-light, and heavy activity breathing conditions, were investigated numerically using turbulence and transition models, as well as experimentally. Simulation results for airflow properties, including velocity vectors, pressure drops, streamlines, eddy viscosity, and turbulent kinetic energy contours in the oral-trachea airway model, were presented. The simulated pressure drop was compared with the experimental data, and reasonable agreement was found. The obtained results showed that the maximum pressure drop occurs in the narrowest part of the larynx region. A comparison between the numerical results and experimental data showed that the transition ( γ - R e θ ) SST model predicts higher pressure losses, especially at higher breathing rates. Formations of the secondary flows in the oropharynx and trachea regions were also observed. In addition, the simulation results showed that in the trachea region, the secondary flow structures dissipated faster for the flow rate of 60 L/min compared to the lower breathing rates of 30 and 45 L/min.

中文翻译:

人体上呼吸道真实模型中不同活动条件下的气流研究

在本研究中,对上呼吸道真实模型内的湍流进行了数值和实验研究。气道模型包括基于一系列 CT 扫描图像的口腔到气管末端的几何细节。呼吸道的拓扑数据用于生成计算模型以及用于实验压降测量的 3D 打印模型。30、45 和 60 L/min 的不同气流速率对应于轻度、半轻度和重度活动呼吸条件,使用湍流和过渡模型以及实验进行了数值研究。气流特性的模拟结果,包括速度矢量、压降、流线、涡粘性、以及口腔气管气道模型中的湍流动能等值线。将模拟压降与实验数据进行了比较,发现了合理的一致性。所得结果表明,最大压降出现在喉部区域的最窄部分。数值结果与实验数据之间的比较表明,过渡 (γ - Re θ ) SST 模型预测更高的压力损失,尤其是在更高的呼吸速率下。还观察到在口咽和气管区域形成二次流。此外,模拟结果表明,在气管区域,与较低的呼吸速率 30 和 45 L/min 相比,在 60 L/min 的流速下,二次流结构消散得更快。将模拟压降与实验数据进行了比较,发现了合理的一致性。所得结果表明,最大压降出现在喉部区域的最窄部分。数值结果与实验数据之间的比较表明,过渡 (γ - Re θ ) SST 模型预测更高的压力损失,尤其是在更高的呼吸速率下。还观察到在口咽和气管区域形成二次流。此外,模拟结果表明,在气管区域,与较低的呼吸速率 30 和 45 L/min 相比,60 L/min 的流速下二次流结构消散得更快。将模拟压降与实验数据进行了比较,发现了合理的一致性。所得结果表明,最大压降出现在喉部区域的最窄部分。数值结果与实验数据之间的比较表明,过渡 (γ - Re θ ) SST 模型预测更高的压力损失,尤其是在更高的呼吸速率下。还观察到在口咽和气管区域形成二次流。此外,模拟结果表明,在气管区域,与较低的呼吸速率 30 和 45 L/min 相比,在 60 L/min 的流速下,二次流结构消散得更快。所得结果表明,最大压降出现在喉部区域的最窄部分。数值结果与实验数据之间的比较表明,过渡 (γ - Re θ ) SST 模型预测更高的压力损失,尤其是在更高的呼吸速率下。还观察到在口咽和气管区域形成二次流。此外,模拟结果表明,在气管区域,与较低的呼吸速率 30 和 45 L/min 相比,在 60 L/min 的流速下,二次流结构消散得更快。所得结果表明,最大压降出现在喉部区域的最窄部分。数值结果与实验数据之间的比较表明,过渡 (γ - Re θ ) SST 模型预测更高的压力损失,尤其是在更高的呼吸速率下。还观察到在口咽和气管区域形成二次流。此外,模拟结果表明,在气管区域,与较低的呼吸速率 30 和 45 L/min 相比,在 60 L/min 的流速下,二次流结构消散得更快。还观察到在口咽和气管区域形成二次流。此外,模拟结果表明,在气管区域,与较低的呼吸速率 30 和 45 L/min 相比,在 60 L/min 的流速下,二次流结构消散得更快。还观察到在口咽和气管区域形成二次流。此外,模拟结果表明,在气管区域,与较低的呼吸速率 30 和 45 L/min 相比,在 60 L/min 的流速下,二次流结构消散得更快。
更新日期:2020-09-17
down
wechat
bug