当前位置: X-MOL 学术Adv. Mater. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Halide Perovskite Quantum Dots Photosensitized‐Amorphous Oxide Transistors for Multimodal Synapses
Advanced Materials Technologies ( IF 6.4 ) Pub Date : 2020-09-16 , DOI: 10.1002/admt.202000514
Srilakshmi Subramanian Periyal 1 , Metikoti Jagadeeswararao 2 , Si En Ng 1 , Rohit Abraham John 1 , Nripan Mathews 1, 2
Affiliation  

Deployment of novel artificial synapses serves as the crucial unit for building neuromorphic hardware to drive data‐intensive applications. Emulation of complex neural behavior through conventional Si‐based devices requires a large number of elements which increases fabrication complexity and brings challenges of connectivity. Hence, there is a need to investigate alternative material systems and device architectures for emulating richer neural behavior comprising of lesser elements. Herein, a thin‐film transistor‐like synaptic device using all‐inorganic cesium lead bromide (CsPbBr3) perovskite quantum dots (QDs) and amorphous indium gallium zinc oxide semiconductor active material is explored for brain‐inspired computing. The incorporation of CsPbBr3 QDs as a photosensitizer aids in realizing light‐dependent synaptic memory. Furthermore, type II heterostructure can serve as a basis for electro‐optical programming. The proposed artificial synapse demonstrates a materials combination that can decouple optical absorption and charge transport property and provides freedom to tune the spectral region. Harnessing the advantages of novel materials, the devices obey spike‐timing‐dependent plasticity rules, inculcate associative learning and linear nonvolatile blind updates. This architecture paves way for efficient building of neuromorphic hardware elements with facile tunability and tailorable plasticity.

中文翻译:

卤化物钙钛矿量子点光敏非晶氧化物晶体管用于多峰突触。

部署新型人工突触是构建神经形态硬件来驱动数据密集型应用程序的关键单元。通过常规的基于Si的设备模拟复杂的神经行为需要大量元素,这会增加制造复杂性并带来连接挑战。因此,需要研究替代的材料系统和设备架构,以模拟包括较少元素的更丰富的神经行为。本文研究了一种使用全无机溴化铯铅(CsPbBr 3)钙钛矿量子点(QDs)和非晶铟镓锌氧化物半导体活性材料的类似薄膜晶体管的突触设备,用于脑启发计算。CsPbBr 3的掺入量子点作为光敏剂有助于实现光依赖性突触记忆。此外,II型异质结构可以作为电光编程的基础。拟议中的人工突触演示了一种材料组合,可以使光吸收和电荷传输性质脱钩,并提供调谐光谱区域的自由。利用新型材料的优势,这些设备遵循了与峰值定时相关的可塑性规则,灌输了关联学习和线性非易失性盲目更新。这种体系结构为高效构建具有易变性和可定制可塑性的神经形态硬件元素铺平了道路。
更新日期:2020-11-12
down
wechat
bug