当前位置: X-MOL 学术Structures › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical and experimental study on the behavior of drilled flange steel beam to CFT column connections
Structures ( IF 3.9 ) Pub Date : 2020-09-17 , DOI: 10.1016/j.istruc.2020.09.012
Ali Parvari , Seyed Mehdi Zahrai , S. Mohammad Mirhosseini , Ehsanollah Zeighami

Numerous studies conducted on different types of rigid connections such as reduced beam section (RBS) and drilled flange (DF) showed their ductile behavior. This paper evaluates the seismic performance of moment resisting connections with drilled flange (DF) beams as a simple and efficient alternative for RBS connected to concrete-filled steel tube CFT columns. Different patterns are proposed and the shear capacity of panel zone and ductility of connection are assessed to obtain the optimum case. For this purpose, the finite element Abaqus version 6.14 is used for the numerical models with the thickness ratio of beam flange to web, the type of hole and the number of holes in beam flange as the main parameters. The best arrangement of zigzag hole pattern is first determined by cyclic loading and then experimentally validated. Based on the obtained results, the type and number of holes significantly affect the ductility of connection and decrease stress concentration in the area of beam to column connection. In addition, the idea results in changing plastic hinge from the area of beam-to-column connection and panel zone to the beam in its drilled flange region and reducing the possibility of brittle failure at connection. Further, the arrangement can decrease flexural stress in the groove weld of direct beam-to-CFT column connection by 41% and increase the flexural capacity of panel zone by 31%. Furthermore, a 35% enhancement was observed in the shear capacity of panel zone by increasing the flange to web thickness ratio.



中文翻译:

钻孔法兰钢梁到CFT柱连接行为的数值和实验研究

对不同类型的刚性连接(例如,减小的梁截面(RBS)和钻孔的法兰(DF))进行的大量研究表明,它们具有延性。本文评估了用钻孔法兰(DF)梁进行抗弯连接的抗震性能,作为连接到钢管混凝土CFT柱的RBS的简单有效替代方案。提出了不同的模式,并评估了面板区域的抗剪承载力和连接的延性,以获得最佳情况。为此,将梁法兰与腹板的厚度比,孔的类型和梁法兰上的孔数作为主要参数,将有限元Abaqus版本6.14用于数值模型。之字形孔图案的最佳排列方式是首先通过循环载荷确定,然后进行实验验证。根据获得的结果,孔的类型和数量会显着影响连接的延性,并降低梁到柱连接区域的应力集中。另外,该想法导致将塑料铰链从梁到柱的连接区域和面板区域更改为在其钻孔的法兰区域中的梁,并减少了连接时发生脆性破坏的可能性。此外,该布置可以将直接梁与CFT柱连接的坡口焊缝中的弯曲应力降低41%,并使面板区域的抗弯能力提高31%。此外,通过增加法兰与腹板的厚度比,可以观察到面板区域的剪切能力提高了35%。孔的类型和数量会显着影响连接的延性,并降低梁到柱连接区域的应力集中。另外,该想法导致将塑料铰链从梁到柱的连接区域和面板区域更改为在其钻孔的法兰区域中的梁,并减少了连接时发生脆性破坏的可能性。此外,该布置可以将直接梁与CFT柱连接的坡口焊缝中的弯曲应力降低41%,并使面板区域的抗弯能力提高31%。此外,通过增加法兰与腹板的厚度比,可以观察到面板区域的剪切能力提高了35%。孔的类型和数量会显着影响连接的延性,并降低梁到柱连接区域的应力集中。另外,该想法导致将塑料铰链从梁到柱的连接区域和面板区域更改为在其钻孔的法兰区域中的梁,并减少了连接时发生脆性破坏的可能性。此外,该布置可以将直接梁与CFT柱连接的坡口焊缝中的弯曲应力降低41%,并使面板区域的抗弯能力提高31%。此外,通过增加法兰与腹板的厚度比,可以观察到面板区域的剪切能力提高了35%。这种想法导致将塑料铰链从梁到柱的连接区域和面板区域更改为钻孔法兰区域中的梁,并减少了连接时发生脆性破坏的可能性。此外,该布置可以将直接梁与CFT柱连接的坡口焊缝中的弯曲应力降低41%,并使面板区域的抗弯能力提高31%。此外,通过增加法兰与腹板的厚度比,可以观察到面板区域的剪切能力提高了35%。这种想法导致将塑料铰链从梁到柱的连接区域和面板区域更改为钻孔法兰区域中的梁,并减少了连接时发生脆性破坏的可能性。此外,该布置可以将直接梁与CFT柱连接的坡口焊缝中的弯曲应力降低41%,并使面板区域的抗弯能力提高31%。此外,通过增加法兰与腹板的厚度比,可以观察到面板区域的剪切能力提高了35%。

更新日期:2020-09-17
down
wechat
bug