当前位置: X-MOL 学术Sol. Energy Mater. Sol. Cells › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The potential of cast silicon
Solar Energy Materials and Solar Cells ( IF 6.3 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.solmat.2020.110789
Martin C. Schubert , Florian Schindler , Jan Benick , Stephan Riepe , Patricia Krenckel , Armin Richter , Ralph Müller , Benjamin Hammann , Sebastian Nold

Abstract The interest in cast mono silicon is increasing due to its lower energy consumption and resulting smaller carbon footprint, lower oxygen content and resulting less oxygen-related defects as well as easy scalability to large wafer formats like 210 × 210 mm2 full square. As a cast silicon alternative to high performance multicrystalline (hpm) silicon, which rapidly lost market share, we analyze the cell efficiency potential of cast mono silicon in a TOPCon cell structure. We show how the absence of grain boundaries and the exceptional tolerance of the material quality towards high temperature processing enable this significant increase of the cell efficiency potential compared to hpm silicon. The very effective suppression of crystal defects by the Seed Manipulation for ARtificially controlled defect Technique (SMART) results in a very low lateral variation of the high material quality. We present certified cell efficiencies of 23.3% on n-type material crystallized in our labs, which demonstrates the high efficiency potential even for our lab-type G2 crystallization. An additional crystallization experiment for 210 × 210 mm2 wafers demonstrates that SMART mono is compatible to large wafer sizes. A significant difference of the crystallization costs for Cz and cast mono crystallization as a function of electricity costs is discussed.

中文翻译:

铸硅的潜力

摘要 由于铸造单晶硅能耗低、碳足迹更小、氧含量低、氧相关缺陷更少,以及易于扩展到 210 × 210 mm2 全平方等大型晶圆格式,因此人们对铸造单晶的兴趣正在增加。作为快速失去市场份额的高性能多晶 (hpm) 硅的铸造硅替代品,我们分析了 TOPCon 电池结构中铸造单晶硅的电池效率潜力。我们展示了与 hpm 硅相比,没有晶界和材料质量对高温处理的特殊耐受性如何显着提高电池效率潜力。通过人工控制缺陷技术 (SMART) 的种子处理非常有效地抑制晶体缺陷,从而使高材料质量的横向变化非常低。我们在实验室中结晶的 n 型材料证明了 23.3% 的电池效率,这表明即使对于我们的实验室型 G2 结晶也具有高效率潜力。210 × 210 mm2 晶圆的额外结晶实验表明 SMART mono 兼容大晶圆尺寸。讨论了 Cz 和铸造单晶的结晶成本作为电力成本的函数的显着差异。这表明即使对于我们的实验室型 G2 结晶也具有高效潜力。210 × 210 mm2 晶圆的额外结晶实验表明 SMART mono 兼容大晶圆尺寸。讨论了 Cz 和铸造单晶的结晶成本作为电力成本的函数的显着差异。这表明即使对于我们的实验室型 G2 结晶也具有高效潜力。210 × 210 mm2 晶圆的额外结晶实验表明 SMART mono 兼容大晶圆尺寸。讨论了 Cz 和铸造单晶的结晶成本作为电力成本的函数的显着差异。
更新日期:2021-01-01
down
wechat
bug