当前位置: X-MOL 学术Opt. Laser Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental design for CO2 laser cutting of sub-millimeter features in very large-area carbon nanotube sheets
Optics & Laser Technology ( IF 4.6 ) Pub Date : 2020-09-17 , DOI: 10.1016/j.optlastec.2020.106591
Andrew R. Bucossi , Jamie E. Rossi , Brian J. Landi , Ivan Puchades

In this work, laser cutting methodologies have been demonstrated for defining submillimeter features in commercially available carbon nanotube (CNT) sheet materials (24 and 74-µm thick) using a commercial CO2 laser source with a maximum power output of 30 W. Full factorial and central composite designs of experiments were used to investigate the effect of various factors, including the laser power (10–90% of max), speed (10–90% of max), and pulses per inch (100–1000 PPI), on the resulting kerf width and the kerf width variation for 5 mm long single straight-line features. Maximizing the pulses per inch yielded laser cuts with reduced variability, while the power and speed were determined to be the significant factors affecting the kerf width. Fabrication of more complex grid structures, consisting of 100 square openings (0.838 mm wide), revealed that the conditions used for cutting straight lines were insufficient for cutting grids. Thus, for a fixed number of pulses-per-inch, the ratio of the values of power and speed, P/S ratio, was determined to be most significant for affecting the feature quality of these grid structures, as it determines the heat input energy and the delivered energy density. It was determined that, for a fixed PPI of 1000, a percent power value 1.6 × higher than the percent speed value was needed as the input parameter to cut the 24 µm thick CNT sheet, and a percent power value 3.5 × higher than the percent speed value was required to successfully cut the 74 µm thick CNT sheet. Ultimately, refinement in the laser cutting conditions by increasing the energy delivered per pulse and using two passes to account for sheet non-uniformities, enabled patterning of large area (up to 280 mm × 280 mm) CNT sheets with close-packed circles. A structure of this size has over 48,000 openings, and analysis via optical microscopy determined the features have a measured diameter of 0.78 mm ± 0.01 mm, exhibiting reproducibility over the entire CNT sample. Finally, multiple intricate geometries with variable feature spacing were fabricated all on a single CNT sample, demonstrating the utility of laser machining as an alternative technology solution to traditional CNT patterning techniques. These results provide a scalable methodology to determine the laser cutting parameters for use in fabricating very large-area CNT structures with intricate features.



中文翻译:

大面积碳纳米管片中亚毫米特征的CO 2激光切割实验设计

在这项工作中,激光切割方法已被证明可以使用商用CO 2在商用碳纳米管(CNT)片材(厚度为24和74 µm)中定义亚毫米级特征。最大功率为30 W的激光源。采用全因子和中心复合设计的实验来研究各种因素的影响,包括激光功率(最大10–90%),速度(最大10–90%) ),以及每英寸的脉冲数(100-1000 PPI),取决于产生的切口宽度和5 mm长的单直线特征的切口宽度变化。最大化每英寸脉冲产生的激光切割具有降低的可变性,而功率和速度被确定为影响切缝宽度的重要因素。由100个正方形的开口(0.838毫米宽)组成的更复杂的网格结构的制造表明,用于切割直线的条件不足以切割网格。因此,对于固定的每英寸脉冲数,功率和速度的值之比,P / S比,由于确定热量输入能量和传递的能量密度,因此对影响这些网格结构的特征质量最重要。已确定,对于固定的PPI为1000,需要功率百分比值比速度值高1.6×作为切割24 µm厚CNT片材的输入参数,功率百分比值比其高3.5×。要成功切割74 µm厚的CNT片,必须提供最大速度值。最终,通过增加每个脉冲传递的能量并使用两次通过来解决片材不均匀性,从而在激光切割条件下进行细化,从而实现了大面积(最大280 mm×280 mm)CNT片的密排图案化。这种规模的结构有超过48,000个开口,并通过光学显微镜分析确定特征的测量直径为0.78 mm±0.01 mm,在整个CNT样品上均具有再现性。最后,在单个CNT样品上都制作了具有可变特征间距的多个复杂几何形状,这证明了激光加工作为传统CNT图案化技术的替代技术解决方案的效用。这些结果提供了可扩展的方法,以确定用于制造具有复杂特征的非常大面积的CNT结构的激光切割参数。证明了激光加工作为传统CNT图案化技术的替代技术解决方案的实用性。这些结果提供了可扩展的方法,以确定用于制造具有复杂特征的非常大面积的CNT结构的激光切割参数。证明了激光加工作为传统CNT图案化技术的替代技术解决方案的实用性。这些结果提供了可扩展的方法,以确定用于制造具有复杂特征的非常大面积的CNT结构的激光切割参数。

更新日期:2020-09-18
down
wechat
bug