当前位置: X-MOL 学术Mechatronics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Toward observable UHVCVD: Modeling of flow dynamics and AAS partial pressure measurement implementation
Mechatronics ( IF 3.1 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.mechatronics.2020.102427
M. Dresscher , B. Jayawardhana , B.J. Kooi , J.M.A. Scherpen

Abstract Ultra-high vacuum chemical vapor deposition is a thin film deposition process that features excellent film purity, but is sensitive to the processing variations (such as, the precursors and their dispensers, the reactor’s initial condition, etc.). In this paper, we present the design of a ultra-high vacuum chemical vapor deposition reactor with in situ partial pressure atomic absorption spectroscopy measurement that improves reproducibility and observability of such a process. Our main contributions are: (i) a conceptual control systems design of ultra-high vacuum chemical vapor deposition; (ii) atomic absorption spectroscopy based sensor design for the real-time in situ partial pressure measurements; (iii) a flux dynamical model; (iv) experimental reactor design; and (v) experimental validation of model components and the atomic absorption spectroscopy measurement technique. Our results show that the proposed sensor systems are able to provide real-time measurements of the partial pressure inside the reactor and our proposed flux dynamical model agrees with the measured partial pressure. The latter allows us to use it in the design of model-based output feedback control of the partial pressure.

中文翻译:

实现可观察的 UHVCVD:流动动力学建模和 AAS 分压测量实施

摘要 超高真空化学气相沉积是一种薄膜沉积工艺,具有优良的薄膜纯度,但对工艺变化(如前驱体及其分配器、反应器的初始条件等)敏感。在本文中,我们介绍了具有原位分压原子吸收光谱测量的超高真空化学气相沉积反应器的设计,该反应器提高了该过程的再现性和可观察性。我们的主要贡献是:(i)超高真空化学气相沉积的概念控制系统设计;(ii) 用于实时原位分压测量的基于原子吸收光谱的传感器设计;(iii) 通量动力学模型;(iv) 实验反应堆设计;(v) 模型组件和原子吸收光谱测量技术的实验验证。我们的结果表明,所提出的传感器系统能够提供反应器内分压的实时测量,我们提出的通量动力学模型与测得的分压一致。后者允许我们将其用于设计基于模型的分压输出反馈控制。
更新日期:2020-11-01
down
wechat
bug