当前位置: X-MOL 学术J. Alloys Compd. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Rapid and large-scale synthesis of polydopamine based N-doped carbon spheres@CoxNi1-x(OH)2 core-shell nanocomposites for high performance supercapacitors
Journal of Alloys and Compounds ( IF 5.8 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.jallcom.2020.157246
Lili Jing , Lin Zhang , Guangheng Li , Zhirong Guo , Zhaohui Li , Zhongjun Li , Hongchang Yao , Jianshe Wang , Qingchao Liu

Abstract The properties of electrode materials are greatly determined by their structures including surface area, pore size distribution and conductivity. Aiming for the advanced structure, we successfully design and develop a core-shell nanocomposite of polydopamine based N-doped carbon spheres (NCSs) and CoxNi1-x(OH)2 by a fast and simple two-step method. Firstly, regular NCSs are directly derived from carbonization of polydopamine, which offer conductive cores for fast electronic transport. Then, flower-like shells consisting of interlinked CoxNi1-x(OH)2 ultrathin nanosheets are vertically and evenly grafted on the surface of NCSs substrate by a chemical bath deposition method, which is faster and more suitable for large-scale production than hydrothermal synthesis. To get the homogeneous bimetal hydroxides CoxNi1-x(OH)2 through this rapid precipitation process, the influences of Co doping content on the morphologies, structure and capacitance properties of hybrids are further analyzed. Results show that the obtained NCSs@CoxNi1-x(OH)2 nanocomposite with small amount of Co doping exhibits impressively enhanced specific capacitance (2065 F g−1 at 1 A g−1) and rate capability (1429 F g−1 even at 45 A g−1) than NCSs@Ni(OH)2. The outstanding capacitive performance of this kind of nanocomposite is due to its large surface area, optimum porous size distribution and retained flower-like morphology, especially the high electrical conductivity originating from conductive skeleton of NCSs and Co ion doping. Furthermore, using the optimized NCSs@CoxNi1-x(OH)2 and activated carbon as a positive and negative electrode, the as-prepared energy storage device achieves higher energy (16–37 Wh kg−1) and power density (8−0.4 kW kg−1), along with satisfactory cycling stability.

中文翻译:

用于高性能超级电容器的聚多巴胺基 N 掺杂碳球@CoxNi1-x(OH)2 核壳纳米复合材料的快速大规模合成

摘要 电极材料的性能很大程度上取决于其结构,包括表面积、孔径分布和电导率。针对先进的结构,我们通过快速简单的两步法成功设计和开发了基于聚多巴胺的 N 掺杂碳球 (NCS) 和 CoxNi1-x(OH)2 的核壳纳米复合材料。首先,常规 NCS 直接来源于聚多巴胺的碳化,它为快速电子传输提供导电核心。然后,通过化学浴沉积法,由相互连接的CoxNi1-x(OH)2超薄纳米片组成的花状壳垂直均匀地接枝在NCSs基底表面,比水热合成更快更适合大规模生产. 为了通过这种快速沉淀过程获得均质的双金属氢氧化物 CoxNi1-x(OH)2,进一步分析了 Co 掺杂量对杂化物形貌、结构和电容特性的影响。结果表明,所获得的具有少量 Co 掺杂的 NCSs@CoxNi1-x(OH)2 纳米复合材料表现出令人印象深刻的增强的比电容(1 A g-1 时为 2065 F g-1)和倍率性能(1429 F g-1,即使在45 A g-1) 比 NCSs@Ni(OH)2。这种纳米复合材料优异的电容性能是由于其大的表面积、最佳的多孔尺寸分布和保留的花状形态,特别是源自 NCS 和 Co 离子掺杂的导电骨架的高电导率。此外,使用优化的 NCSs@CoxNi1-x(OH)2 和活性炭作为正负极,
更新日期:2021-02-01
down
wechat
bug