当前位置: X-MOL 学术Int. J. Hydrogen Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Advanced controller design based on gain and phase margin for microgrid containing PV/WTG/Fuel cell/Electrolyzer/BESS
International Journal of Hydrogen Energy ( IF 7.2 ) Pub Date : 2020-09-17 , DOI: 10.1016/j.ijhydene.2020.08.185
Burak Yildirim

Nowadays, with the increase in the amount of power generation related to renewable energy resources, the need for energy storage and management is raised. In this regard, the hydrogen energy plays a critical role in the development of renewable technologies. In view of the above, advanced controller design is presented in this paper to effectively perform load frequency control of islanded fuel cell microgrid based on the wind turbine, photovoltaic, fuel cell, electrolyzer, battery energy storage systems, and residential and commercial loads. The controller design is based on the determination of the controller parameters that the fuel cell microgrid system will provide the desired dynamic properties. In the proposed controller design, virtual gain and phase margin testers are added to provide the desired dynamic properties. The controller's stable parameter plane is determined with the help of the stability boundary locus method, taking into account time delay, gain, and phase margin. First, the accuracy of the stable parameter plane determined for the proposed controller design is demonstrated by means of time domain and eigenvalue analyzes. Finally, in order to show the performance of the advanced controller design and the success of the fuel cell as a backup generator, analysis studies have been carried out using actual data of solar and wind, and appropriate changes of load in studied microgrid.



中文翻译:

基于增益和相位裕度的先进控制器设计,用于包含PV / WTG /燃料电池/电解器/ BESS的微电网

如今,随着与可再生能源相关的发电量的增加,对能量存储和管理的需求增加了。在这方面,氢能在可再生技术的发展中起着至关重要的作用。有鉴于此,本文提出了先进的控制器设计,以有效地执行基于风力涡轮机,光伏,燃料电池,电解池,电池储能系统以及住宅和商业负载的孤岛式燃料电池微电网的负载频率控制。控制器设计基于控制器参数的确定,即燃料电池微电网系统将提供所需的动态特性。在建议的控制器设计中,添加了虚拟增益和相位裕度测试仪,以提供所需的动态特性。控制器' 借助边界边界轨迹法,并考虑时间延迟,增益和相位裕量,可以确定稳定的参数平面。首先,通过时域和特征值分析证明了为所提出的控制器设计确定的稳定参数平面的准确性。最后,为了展示高级控制器设计的性能以及燃料电池作为备用发电机的成功,已经利用太阳能和风的实际数据以及研究的微电网中负荷的适当变化进行了分析研究。通过时域和特征值分析证明了为所建议的控制器设计确定的稳定参数平面的准确性。最后,为了展示高级控制器设计的性能以及燃料电池作为备用发电机的成功,已经利用太阳能和风的实际数据以及研究的微电网中负荷的适当变化进行了分析研究。通过时域和特征值分析证明了为所建议的控制器设计确定的稳定参数平面的准确性。最后,为了展示高级控制器设计的性能以及燃料电池作为备用发电机的成功,已经利用太阳能和风的实际数据以及研究的微电网中负荷的适当变化进行了分析研究。

更新日期:2020-09-17
down
wechat
bug