当前位置: X-MOL 学术Environ. Int. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Emerging lanthanum (III)-containing materials for phosphate removal from water: A review towards future developments.
Environment International ( IF 11.8 ) Pub Date : 2020-09-17 , DOI: 10.1016/j.envint.2020.106115
Yue Zhi 1 , Chuhui Zhang 2 , Rune Hjorth 3 , Anders Baun 4 , Owen W Duckworth 5 , Douglas F Call 2 , Detlef R U Knappe 2 , Jacob L Jones 6 , Khara Grieger 7
Affiliation  

The last two decades have seen a rise in the development of lanthanum (III)-containing materials (LM) for controlling phosphate in the aquatic environment. >70 papers have been published on this topic in the peer-reviewed literature, but mechanisms of phosphate removal by LM as well as potential environmental impacts of LM remain unclear. In this review, we summarize peer-reviewed scientific articles on the development and use of 80 different types of LM in terms of prospective benefits, potential ecological impacts, and research needs. We find that the main benefits of LM for phosphate removal are their ability to strongly bind phosphate under diverse environmental conditions (e.g., over a wide pH range, in the presence of diverse aqueous constituents). The maximum phosphate uptake capacity of LM correlates primarily with the La content of LM, whereas reaction kinetics are influenced by LM formulation and ambient environmental conditions (e.g., pH, presence of co-existing ions, ligands, organic matter). Increased La solubilization can occur under some environmental conditions, including at moderately acidic pH values (i.e., < 4.5–5.6), highly saline conditions, and in the presence of organic matter. At the same time, dissolved La will likely undergo hydrolysis, bind to organic matter, and combine with phosphate to precipitate rhabdophane (LaPO4·H2O), all of which reduce the bioavailability of La in aquatic environments. Overall, LM use presents a low risk of adverse effects in water with pH > 7 and moderate-to-high bicarbonate alkalinity, although caution should be applied when considering LM use in aquatic systems with acidic pH values and low bicarbonate alkalinity. Moving forward, we recommend additional research dedicated to understanding La release from LM under diverse environmental conditions as well as long-term exposures on ecological organisms, particularly primary producers and benthic organisms. Further, site-specific monitoring could be useful for evaluating potential impacts of LM on both biotic and abiotic systems post-application.



中文翻译:

用于从水中去除磷酸盐的新兴含镧(III)材料:对未来发展的回顾。

在过去的二十年中,用于控制水生环境中磷酸盐的含镧(III)材料(LM)的开发有所增长。在同行评审的文献中已发表了超过70篇关于该主题的论文,但是LM去除磷酸盐的机制以及LM的潜在环境影响仍不清楚。在这篇综述中,我们从预期收益,潜在的生态影响和研究需求等方面总结了关于80种不同类型的LM的开发和使用的同行评审科学文章。我们发现,LM去除磷酸盐的主要好处是它们在各种环境条件下(例如,在宽的pH范围内,在存在各种水性成分的情况下)牢固结合磷酸盐的能力。LM的最大磷酸盐吸收能力主要与LM的La含量相关,而反应动力学受LM配方和周围环境条件(例如pH值,共存离子的存在,配体,有机物)的影响。La增溶作用可能在某些环境条件下发生,包括在中等酸性pH值(即<4.5-5.6),高盐度条件下以及存在有机物时。同时,溶解的La可能会发生水解,与有机物结合并与磷酸盐结合而沉淀出Rhabdophane(LaPO 并存在有机物。同时,溶解的La可能会发生水解,与有机物结合并与磷酸盐结合而沉淀出Rhabdophane(LaPO 并存在有机物。同时,溶解的La可能会发生水解,与有机物结合,并与磷酸盐结合以沉淀出Rhabdophane(LaPO4 ·H 2 O),所有这些都会降低La在水生环境中的生物利用度。总体而言,LM的使用在pH值大于7且碳酸氢盐碱度为中度到高的水中具有较低的不利影响风险,尽管在酸性pH值和碳酸氢盐碱度较低的水生系统中使用LM时应谨慎。展望未来,我们建议进行其他研究,以了解La在各种环境条件下从LM释放以及对生态生物(尤其是初级生产者和底栖生物)的长期暴露。此外,特定地点的监测对于评估LM对施用后生物和非生物系统的潜在影响可能是有用的。

更新日期:2020-09-18
down
wechat
bug