当前位置: X-MOL 学术Compos. Part B Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microstructure evolution and mechanical properties of TiB/Ti6Al4V gradient-material lattice structure fabricated by laser powder bed fusion
Composites Part B: Engineering ( IF 12.7 ) Pub Date : 2020-09-17 , DOI: 10.1016/j.compositesb.2020.108417
Jinliang Zhang , Bo Song , Lei Yang , Ruijie Liu , Lei Zhang , Yusheng Shi

The lattice structure with graded composition and microstructure in function of position, allowing for smooth transition and combination of multiple desirable features, has great prospects in various applications. Laser powder bed fusion (LPBF) is an effective approach to preparing the gradient-material lattice structure by altering the proportion of raw powder materials. In this study, in-situ TiB/Ti6Al4V gradient-material bulk samples and Schoen Gyroid scaffolds with various relative densities were manufactured by LPBF for the first time. Microstructure evolution, manufacturing quality, and mechanical responses were analyzed in detail. The results show that the graded layers exhibit good metallurgical bonding with irregular band-shaped transition zones at the interface. The in-situ synthesized TiB phase particles improve the strength and grain refinement, but decrease the dimensional accuracy and induce more defects. The elastic modulus and compressive yield strength of gradient-material lattice structures increase with the rise of the relative density. The TiB/Ti6Al4V gradient-material lattice structures have higher stiffness and strength compared with homogeneous Ti6Al4V counterparts. A combined model for predicting and designing the mechanical properties of lattice structures with graded layers is used to offer a new methodology to design complex components with multiple materials combined with superior performances.



中文翻译:

激光粉末床熔合制备的TiB / Ti6Al4V梯度材料晶格结构的微观组织演变和力学性能

具有梯度结构和位置功能的微结构的晶格结构,允许平稳过渡和多种所需特征的组合,在各种应用中具有广阔的前景。激光粉末床熔合(LPBF)是通过改变原始粉末材料的比例来制备梯度材料晶格结构的有效方法。在这项研究中,LPBF首次制造了原位TiB / Ti6Al4V梯度材料块状样品和各种相对密度的Schoen Gyroid支架。详细分析了微观组织的演变,制造质量和机械响应。结果表明,梯度层表现出良好的冶金结合,在界面处具有不规则的带状过渡区。原位合成的TiB相颗粒可提高强度和细化晶粒,但会降低尺寸精度并引发更多缺陷。梯度材料晶格结构的弹性模量和压缩屈服强度随着相对密度的增加而增加。与均质的Ti6Al4V对应物相比,TiB / Ti6Al4V梯度材料晶格结构具有更高的刚度和强度。用于预测和设计具有渐变层的晶格结构的机械性能的组合模型可用于提供一种新方法,以设计具有多种材料并具有卓越性能的复杂组件。梯度材料晶格结构的弹性模量和压缩屈服强度随着相对密度的增加而增加。与均质的Ti6Al4V对应物相比,TiB / Ti6Al4V梯度材料晶格结构具有更高的刚度和强度。用于预测和设计具有渐变层的晶格结构的机械性能的组合模型可用于提供一种新方法,以设计具有多种材料并具有卓越性能的复杂组件。梯度材料晶格结构的弹性模量和压缩屈服强度随着相对密度的增加而增加。与均质的Ti6Al4V对应物相比,TiB / Ti6Al4V梯度材料晶格结构具有更高的刚度和强度。用于预测和设计具有渐变层的晶格结构的机械性能的组合模型可用于提供一种新方法,以设计具有多种材料并具有卓越性能的复杂组件。

更新日期:2020-09-23
down
wechat
bug