当前位置: X-MOL 学术Soft Matter › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechanical basis for fibrillar bundle morphology.
Soft Matter ( IF 2.9 ) Pub Date : 2020-09-16 , DOI: 10.1039/d0sm01145b
Thomas C T Michaels 1 , Edvin Memet 2 , L Mahadevan 3
Affiliation  

Understanding the morphology of self-assembled fibrillar bundles and aggregates is relevant to a range of problems in molecular biology, supramolecular chemistry and materials science. Here, we propose a coarse-grained approach that averages over specific molecular details and yields an effective mechanical theory for the spatial complexity of self-assembling fibrillar structures that arises due to the competing effects of (the bending and twisting) elasticity of individual filaments and the adhesive interactions between them. We show that our theoretical framework accounting for this allows us to capture a number of diverse fibril morphologies observed in natural and synthetic systems, ranging from Filopodia to multi-walled carbon nanotubes, and leads to a phase diagram of possible fibril shapes. We also show how the extreme sensitivity of these morphologies can lead to spatially chaotic structures. Together, these results suggest a common mechanical basis for mesoscale fibril morphology as a function of the nanoscale mechanical properties of its filamentous constituents.

中文翻译:

纤维状束形态的机械基础。

了解自组装纤维状束和聚集体的形态与分子生物学,超分子化学和材料科学中的一系列问题有关。在这里,我们提出了一种粗粒度方法,该方法可以对特定分子的细节取平均,并为自组装原纤维结构的空间复杂性提供有效的力学理论,该结构是由于各个细丝的(弯曲和扭曲)弹性的竞争效应而产生的。它们之间的粘合相互作用。我们表明,我们的理论框架对此进行了解释,使我们能够捕获在天然和合成系统中观察到的多种原纤维形态,从丝状伪足到多壁碳纳米管,并得出可能的原纤维形状的相图。我们还展示了这些形态的极端敏感性如何导致空间混乱的结构。在一起,这些结果表明中尺度原纤维形态作为其丝状成分的纳米级机械性能的函数的通用机械基础。
更新日期:2020-09-16
down
wechat
bug