当前位置: X-MOL 学术Nanotechnology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of pore-size disorder on the electronic properties of semiconducting graphene nanomeshes
Nanotechnology ( IF 2.9 ) Pub Date : 2020-09-16 , DOI: 10.1088/1361-6528/abb04d
Sarah Gamal 1 , Mohamed M Fadlallah , Lobna M Salah , Ahmed A Maarouf
Affiliation  

Graphene nanomeshes (GNMs) are novel materials that recently raised a lot of interest. They are fabricated by forming a lattice of pores in graphene. Depending on the pore size and pore lattice constant, GNMs can be either semimetallic or semiconducting with a gap large enough (∼ 0.5 eV) to be considered for transistor applications. The fabrication process is bound to produce some structural disorder due to variations in pore size. Recent electronic transport measurements in GNM devices (ACS Appl. Mater. Interfaces 10, 10 362, 2018) show a degradation of their bandgap in devices having pore-size disorder. It is therefore important to understand the effect of such variability on the electronic properties of semiconducting GNMs. In this work we use the density functional-based tight binding formalism to calculate the electronic properties of GNM structures with different pore sizes, pore densities, and with hydrogen and oxygen pore edge passivations. We find that structural disorder reduces the electronic gap and the carrier group velocity, which may interpret recent transport measurements in GNM devices. Furthermore, the trend of the bandgap with structural disorder is not significantly affected by the change in pore edge passivation. Our results show that even with structural disorder, GNMs are still attractive from a transistor device perspective.

中文翻译:

孔径无序对半导体石墨烯纳米网电子特性的影响

石墨烯纳米网(GNM)是最近引起了很多兴趣的新型材料。它们是通过在石墨烯中形成孔格来制造的。根据孔径和孔晶格常数,GNM 可以是半金属的或半导体的,间隙足够大(~0.5 eV),可以考虑用于晶体管应用。由于孔径的变化,制造过程必然会产生一些结构紊乱。最近在 GNM 设备中进行的电子传输测量(ACS Appl. Mater. Interfaces 10, 10 362, 2018)显示了它们在具有孔径无序的设备中的带隙退化。因此,了解这种可变性对半导体 GNM 电子特性的影响非常重要。在这项工作中,我们使用基于密度泛函的紧束缚形式来计算具有不同孔径、孔密度以及氢和氧孔边缘钝化的 GNM 结构的电子特性。我们发现结构无序降低了电子间隙和载流子群速度,这可以解释最近在 GNM 设备中的传输测量。此外,结构无序的带隙趋势不受孔边缘钝化变化的显着影响。我们的结果表明,即使存在结构紊乱,从晶体管器件的角度来看,GNMs 仍然具有吸引力。这可以解释最近在 GNM 设备中的传输测量。此外,结构无序的带隙趋势不受孔边缘钝化变化的显着影响。我们的结果表明,即使存在结构紊乱,从晶体管器件的角度来看,GNMs 仍然具有吸引力。这可以解释最近在 GNM 设备中的传输测量。此外,结构无序的带隙趋势不受孔边缘钝化变化的显着影响。我们的结果表明,即使存在结构紊乱,从晶体管器件的角度来看,GNMs 仍然具有吸引力。
更新日期:2020-09-16
down
wechat
bug