当前位置: X-MOL 学术Phys. Rev. Research › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ab initiosolution of the many-electron Schrödinger equation with deep neural networks
Physical Review Research ( IF 3.5 ) Pub Date : 2020-09-16 , DOI: 10.1103/physrevresearch.2.033429
David Pfau , James S. Spencer , Alexander G. D. G. Matthews , W. M. C. Foulkes

Given access to accurate solutions of the many-electron Schrödinger equation, nearly all chemistry could be derived from first principles. Exact wave functions of interesting chemical systems are out of reach because they are NP-hard to compute in general, but approximations can be found using polynomially scaling algorithms. The key challenge for many of these algorithms is the choice of wave function approximation, or Ansatz, which must trade off between efficiency and accuracy. Neural networks have shown impressive power as accurate practical function approximators and promise as a compact wave-function Ansatz for spin systems, but problems in electronic structure require wave functions that obey Fermi-Dirac statistics. Here we introduce a novel deep learning architecture, the Fermionic neural network, as a powerful wave-function Ansatz for many-electron systems. The Fermionic neural network is able to achieve accuracy beyond other variational quantum Monte Carlo Ansatz on a variety of atoms and small molecules. Using no data other than atomic positions and charges, we predict the dissociation curves of the nitrogen molecule and hydrogen chain, two challenging strongly correlated systems, to significantly higher accuracy than the coupled cluster method, widely considered the most accurate scalable method for quantum chemistry at equilibrium geometry. This demonstrates that deep neural networks can improve the accuracy of variational quantum Monte Carlo to the point where it outperforms other ab initio quantum chemistry methods, opening the possibility of accurate direct optimization of wave functions for previously intractable many-electron systems.

中文翻译:

具有深层神经网络的多电子Schrödinger方程的从头算解

只要获得多电子Schrödinger方程的精确解,几乎所有化学反应都可以从第一原理导出。有趣的化学系统的精确波函数是遥不可及的,因为它们通常很难进行NP计算,但是可以使用多项式缩放算法找到近似值。这些算法中许多都面临的主要挑战是选择波函数逼近或Ansatz,必须在效率和精度之间进行权衡。神经网络作为精确的实用函数逼近器显示出令人印象深刻的力量,并有望作为自旋系统的紧凑型波函数Ansatz,但是电子结构中的问题要求波函数服从Fermi-Dirac统计。在这里,我们介绍了一种新颖的深度学习架构,即Fermionic神经网络,作为多电子系统的强大波函数Ansatz。Fermionic神经网络能够在各种原子和小分子上获得超越其他变分量子蒙特卡洛安萨兹(Monte Carlo Ansatz)的精度。除了原子位置和电荷以外,我们没有其他数据,我们预测了氮分子和氢链的解离曲线,这是两个具有挑战性的强相关系统,其精确度远高于偶合簇方法,后者被广泛认为是最精确的可扩展量子化学方法。平衡几何。这表明深度神经网络可以将变分量子蒙特卡洛的精度提高到优于其他量子点的程度 Fermionic神经网络能够在各种原子和小分子上获得超越其他变分量子蒙特卡洛·安萨兹(Monte Carlo Ansatz)的精度。除了原子位置和电荷以外,我们没有其他数据,我们预测了氮分子和氢链的解离曲线,这是两个具有挑战性的强相关系统,其精确度远高于偶合簇方法,后者被广泛认为是最精确的可扩展量子化学方法。平衡几何。这表明深度神经网络可以将变分量子蒙特卡洛的精度提高到优于其他量子点的程度 Fermionic神经网络能够在各种原子和小分子上获得超越其他变分量子蒙特卡洛·安萨兹(Monte Carlo Ansatz)的精度。除了原子位置和电荷以外,我们没有其他数据,我们预测了氮分子和氢链的解离曲线,这是两个具有挑战性的强相关系统,其精确度远高于偶合簇方法,后者被广泛认为是最精确的可扩展量子化学方法。平衡几何。这表明深度神经网络可以将变分量子蒙特卡洛的精度提高到优于其他量子点的程度 与耦合簇方法相比,该方法的准确度要高得多,而耦合簇方法被广泛认为是平衡几何学中量子化学最精确的可扩展方法。这表明深度神经网络可以将变分量子蒙特卡洛的精度提高到优于其他量子点的程度 与耦合簇方法相比,该方法的准确度要高得多,而耦合簇方法被广泛认为是平衡几何学中量子化学最精确的可扩展方法。这表明深度神经网络可以将变分量子蒙特卡洛的精度提高到优于其他量子点的程度从头开始的量子化学方法,为以前难以处理的多电子系统提供了直接精确优化波函数的可能性。
更新日期:2020-09-16
down
wechat
bug