当前位置: X-MOL 学术Micropor. Mesopor. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Impact of γ-alumina pore structure on structure and performance of Ni–Mo/γ-Al2O3 catalyst for 4,6-dimethyldibenzothiophene desulfurization
Microporous and Mesoporous Materials ( IF 4.8 ) Pub Date : 2020-09-16 , DOI: 10.1016/j.micromeso.2020.110637
Di Zhang , Xin-Mei Liu , Yu-Xiang Liu , Zi-Feng Yan

The pore structure plays a vital role in material properties. Therefore, in this study, we prepared γ-Al2O3 with various mesopore diameters to explore the impact of pore structure on the property of Ni–Mo/γ-Al2O3 catalyst and hydrodesulfurization of 4,6-dimethyldibenzothiophene. It reveals that the pore size adjusts the reducibility of Mo species via affecting ammonium heptamolybdate adsorption. The Ni benefits the dispersion and reduction of Mo species. The larger pore imparts weaker polarization of Al3+, which less weakens the interactions between the MoS2 layers. The different polarization of Al3+ results in the diverse Ni–Mo–S structures over the catalysts with various pore sizes, and different active sites in edges and corners are obtained. The optimum pore size of Ni–Mo/γ-Al2O3 catalyst for the desulfurization of 4,6-dimethyldibenzothiophene is 7.0 nm, rather than 5.9 nm for the MoO3/γ-Al2O3 catalyst. The reaction pathway is regulated by the pore size and Ni–Mo–S structure. 4,6-dimethyldibenzothiophene reacts mainly via the hydrogenation pathway over 4.5 nm pore sized catalyst and high edge to corner ratio of the Ni–Mo–S slab (e.g. 2.63). Whereas, the sulfur in 4,6-dimethyldibenzothiophene is preferably eliminated by the direct desulfurization pathway in the pore size of 8.7 nm and low edge to corner ratio of the Ni–Mo–S slab (e.g. 2.04). All these can also be used to design deep desulfurization catalyst for environmental protection.



中文翻译:

γ氧化铝的孔结构的结构和Ni-Mo系/的性能影响的γ-Al 2 ö 3为4,6-二甲基脱硫催化剂

孔结构在材料性能中起着至关重要的作用。因此,在本研究中,我们制备的γ-Al 2 ö 3与各种介孔直径探索孔结构对Ni-Mo系的属性/γ-Al系的影响2 ö 3催化剂和4,6-二甲基的加氢脱硫。结果表明,孔径通过影响七钼酸铵的吸附来调节Mo的还原性。Ni有利于Mo种类的分散和还原。较大的孔使Al 3+的极化减弱,从而减弱了MoS 2层之间的相互作用。Al 3+的不同极化结果导致了具有各种孔径的催化剂上的Ni-Mo-S结构多样化,并且在边缘和角落获得了不同的活性位。Ni-Mo系/的最佳孔尺寸的γ-Al 2 ö 3为4,6-二甲基的脱硫催化剂是7.0纳米,而不是为5.9的MoO纳米3 /γ-Al系2 ö 3催化剂。反应路径受孔径和Ni-Mo-S结构的调节。4,6-二甲基二苯并噻吩主要通过加氢途径在4.5 nm孔径的催化剂上和Ni-Mo-S平板的高边角比(例如2.63)进行反应。而4,6-二甲基二苯并噻吩中的硫最好通过直接脱硫途径在8.7 nm的孔径和Ni-Mo-S平板的低边角比下(例如2.04)消除。所有这些还可以用于设计用于环境保护的深度脱硫催化剂。

更新日期:2020-09-25
down
wechat
bug