当前位置: X-MOL 学术Desalination › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of chemistry and geometry of GO nanochannels on the Li ion selectivity and recovery
Desalination ( IF 8.3 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.desal.2020.114729
Amir Razmjou , Ehsan Hosseini , Withita Cha-Umpong , Asghar Habibnejad Korayem , Mohsen Asadnia , Parisa Moazzam , Yasin Orooji , Hassan Karimi-Maleh , Vicki Chen

Abstract The continually increasing demand for lithium (Li) is predicted to soon exceed its availability, rendering it a geopolitically significant resource. Although seawater is considered one of the largest Li resources, the coexistence of Li ion (Li+) with chemically similar ions such as Na+ and K+ in seawater and its low concentration makes the Li+ extraction from this resource very challenging. Here, the chemical and morphological characterization of graphene traps for maximum lithium-ion capture was introduced by using a theoretical approach. The results illustrate the effect of the key parameters including interlayer spacing and length, surface charge, and functional group, and nanochannel morphology on Li+ selectivity, which results in the cavities with innovative intrinsic traps. These cavities benefit from cation-π interactions, the ability to control interlayer spacing based on the functional group, and a variable energy barrier. The improvements in Li+ selectivity in functionalized asymmetrical graphene nanochannels has been demonstrated, providing new insights for Li+ selective material design.

中文翻译:

GO纳米通道的化学和几何形状对锂离子选择性和回收率的影响

摘要 对锂(Li)的需求不断增长,预计很快就会超过其供应量,使其成为地缘政治上重要的资源。尽管海水被认为是最大的锂资源之一,但海水中锂离子 (Li+) 与化学相似离子如 Na+ 和 K+ 的共存及其低浓度使得从该资源中提取锂离子非常具有挑战性。在这里,通过使用理论方法介绍了用于最大锂离子捕获的石墨烯陷阱的化学和形态特征。结果说明了包括层间距和长度、表面电荷和官能团以及纳米通道形态在内的关键参数对 Li+ 选择性的影响,从而产生了具有创新本征陷阱的空腔。这些空腔受益于阳离子-π相互作用,基于官能团控制层间距的能力,以及可变的能垒。功能化不对称石墨烯纳米通道中 Li+ 选择性的改进已被证明,为 Li+ 选择性材料设计提供了新的见解。
更新日期:2020-12-01
down
wechat
bug