当前位置: X-MOL 学术Appl. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Low Concentrating Photovoltaics (LCPV) for buildings and their performance analyses
Applied Energy ( IF 10.1 ) Pub Date : 2020-09-16 , DOI: 10.1016/j.apenergy.2020.115839
Ranga Vihari Parupudi , Harjit Singh , Maria Kolokotroni

Low concentrating photovoltaic technologies (LCPV) for building application offer viable solutions in improving the conversion efficiency of solar cells leading to an improved electrical output per unit cell area required when compared to conventional solar photovoltaic modules. The current study explores the feasibility of different geometrically equivalent LCPVs designed for building application through indoor experimental characterisation and analytical investigations. LCPV concentrator geometries were designed and simulated to predict optical efficiency at various truncation levels and range of angles of incidence using ray trace module in COMSOL Multiphysics version 5.3. The geometric concentration ratios of LCPVs investigated Compound Parabolic Concentrator (CPC), V-Trough and Asymmetric Compound Parabolic Concentrator (ACPC) with geometric concentration ratios of 1.46, 1.40, and 1.53 respectively. These prototypes were manufactured and their electrical conversion efficiency in conjunction with crystalline silicon (c-Si) solar photovoltaic cells were measured using OAI Trisol Class AAA solar simulator. Analytical model developed in the present study predicts the annual energy output generated and payback period for the LCPVs compared to an equivalent area of conventional flat module. Theoretical modeling results have showed that Asymmetric Compound Parabolic Concentrator (ACPC) with mono-crystalline silicon cells (m-Si) have generated highest energy output per unit area of 177 kWh/m2 as compared to the other configurations which make it economically viable for building retrofit with a predicted payback period of 9.7 years.



中文翻译:

用于建筑物的低浓度光伏(LCPV)及其性能分析

用于建筑应用的低浓度光伏技术(LCPV)为提高太阳能电池的转换效率提供了可行的解决方案,与传统的太阳能光伏模块相比,可提高所需的每单位电池面积的电输出。当前的研究通过室内实验表征和分析研究探索了设计用于建筑应用的不同几何等效LCPV的可行性。设计并模拟了LCPV聚光器的几何形状,以使用COMSOL Multiphysics 5.3版中的光线跟踪模块预测各种截断水平和入射角范围内的光学效率。LCPV的几何浓度比研究了复合抛物面浓缩器(CPC),V型槽和不对称复合抛物面浓缩器(ACPC)的几何浓缩比分别为1.46、1.40和1.53。制造了这些原型,并使用OAI Trisol AAA级AAA太阳模拟器测量了其与晶体硅(c-Si)太阳能光伏电池的电转换效率。与常规平板组件的等效面积相比,本研究开发的分析模型预测了LCPV的年发电量和投资回收期。理论建模结果表明,具有单晶硅电池(m-Si)的不对称复合抛物面聚光器(ACPC)产生的单位面积最大能量输出为177 kWh / m 制造了这些原型,并使用OAI Trisol AAA级AAA太阳模拟器测量了其与晶体硅(c-Si)太阳能光伏电池的电转换效率。与常规平板组件的等效面积相比,本研究开发的分析模型预测了LCPV的年发电量和投资回收期。理论建模结果表明,具有单晶硅电池(m-Si)的不对称复合抛物面聚光器(ACPC)产生的单位面积最大能量输出为177 kWh / m 制造了这些原型,并使用OAI Trisol AAA级AAA太阳模拟器测量了其与晶体硅(c-Si)太阳能光伏电池的电转换效率。与常规平板组件的等效面积相比,本研究开发的分析模型预测了LCPV的年发电量和投资回收期。理论建模结果表明,具有单晶硅电池(m-Si)的不对称复合抛物面聚光器(ACPC)产生的单位面积最大能量输出为177 kWh / m 与常规平板组件的等效面积相比,本研究开发的分析模型预测了LCPV的年发电量和投资回收期。理论建模结果表明,具有单晶硅电池(m-Si)的不对称复合抛物面聚光器(ACPC)产生的单位面积最大能量输出为177 kWh / m 与常规平板组件的等效面积相比,本研究开发的分析模型预测了LCPV的年发电量和投资回收期。理论建模结果表明,具有单晶硅电池(m-Si)的不对称复合抛物面聚光器(ACPC)产生的单位面积最大能量输出为177 kWh / m与其他配置相比为2,使其在经济上可行,可进行建筑物翻新,预计投资回收期为9.7年。

更新日期:2020-09-16
down
wechat
bug