当前位置: X-MOL 学术Int. J. Appl. Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-Accuracy Approach for Thermomechanical Vibration Analysis of FG-Gplrc Fluid-Conveying Viscoelastic Thick Cylindrical Shell
International Journal of Applied Mechanics ( IF 2.9 ) Pub Date : 2020-07-24 , DOI: 10.1142/s1758825120500738
Alireza Rahimi 1 , Akbar Alibeigloo 1
Affiliation  

High importance of fluid-conveying structures in multifarious engineering applications arises the necessity of enhancing the mechanical characteristics of these systems in an effective way. Accordingly, this paper is concerned with vibration performance of functionally graded graphene-platelets reinforced composite (FG-GPLRC) fluid-conveying viscoelastic cylindrical shell surrounded by two-parameter elastic substrate and exposed to temperature gradient and axial load within the context of refined higher order shear deformation theory (RHSDT) including trapezoidal shape factor. Generalized differential quadrature method (GDQM) is employed to solve differential equations of motion for different cases of boundary conditions. The fourth-order Runge–Kutta technique is utilized to determine the time response of the system. Validity of the results is verified through comparison with those presented in the published articles. Comprehensive parametric analysis is performed to reveal the impact of fluid-flow velocity, distribution patterns of GPL, different forms of applied temperature gradient, different boundary conditions, viscoelasticity coefficient, geometrical dimensions of the shell as well as graphene-sheets on the vibration of the system. The numerical results demonstrate that negative influence of applying compressive axial load and rising temperature gradient on the vibrational response of the system can be alleviated when the system is exposed to sinusoidal form of temperature rise with proper power-index.

中文翻译:

FG-Gplrc流体输送粘弹性厚圆柱壳热机械振动的高精度分析方法

流体输送结构在多种工程应用中的重要性日益凸显,因此需要以有效的方式增强这些系统的机械特性。因此,本文研究了功能梯度石墨烯片增强复合材料(FG-GPLRC)流体输送粘弹性圆柱壳的振动性能,该圆柱壳被双参数弹性基板包围,并在精细化高阶环境下暴露于温度梯度和轴向载荷。剪切变形理论(RHSDT)包括梯形形状因子。广义微分求积法 (GDQM) 用于求解不同边界条件情况下的运动微分方程。四阶龙格-库塔技术用于确定系统的时间响应。结果的有效性通过与已发表文章中的结果进行比较来验证。进行综合参数分析以揭示流体流速、GPL 分布模式、不同形式的施加温度梯度、不同边界条件、粘弹性系数、壳的几何尺寸以及石墨烯片对振动的影响。系统。数值结果表明,当系统处于具有适当功率指数的正弦形式的温升时,施加轴向压缩载荷和温度梯度上升对系统振动响应的负面影响可以得到缓解。进行综合参数分析以揭示流体流速、GPL 分布模式、不同形式的施加温度梯度、不同边界条件、粘弹性系数、壳的几何尺寸以及石墨烯片对振动的影响。系统。数值结果表明,当系统处于具有适当功率指数的正弦形式的温升时,施加轴向压缩载荷和温度梯度上升对系统振动响应的负面影响可以得到缓解。进行综合参数分析以揭示流体流速、GPL 分布模式、不同形式的施加温度梯度、不同边界条件、粘弹性系数、壳的几何尺寸以及石墨烯片对振动的影响。系统。数值结果表明,当系统处于具有适当功率指数的正弦形式的温升时,施加轴向压缩载荷和温度梯度上升对系统振动响应的负面影响可以得到缓解。
更新日期:2020-07-24
down
wechat
bug