当前位置: X-MOL 学术Nanotechnology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modulation of transport properties of metal/MoS2 interfaces using BN-graphene lateral tunneling layer
Nanotechnology ( IF 2.9 ) Pub Date : 2020-09-15 , DOI: 10.1088/1361-6528/abafdb
Rui Guo 1 , Jie Su , Pengliang Zhang , Fuchao He , Zhenhua Lin , Jincheng Zhang , Jingjing Chang , Yue Hao
Affiliation  

Modulating the n- and p-type interfacial charge transport properties of the metal-semiconductor interface is vital to realizing high performance two-dimensional material nanodevices and is still a significant challenge. Here, a boron nitride (BN)-graphene lateral heterostructure (LH) was used as the interfacial tunneling layer to control the Schottky barrier, Fermi level pinning and charge injection efficiency of the metal-MoS2 interface. The BN-graphene LH with graphene-N junction structure decreased the n-type vertical Schottky barrier and enhanced the interfacial tunneling probability, while the graphene-B junction structure decreased the p-type vertical Schottky barrier. Consequently, the n-type Au/LH-MoS2 interface with Ohmic character and high tunneling probability (∼0.242) and the p-type vertical Schottky barrier of about 0.20 eV for the Pt/LH-MoS2 interface were achieved. Compared to other reported BN or graphene tunneling layers, such a BN-graphene LH tunneling layer not only suppressed the charge scattering from the metal electrode to the MoS2 layer and the Fermi level pinning effect, but also reduced the contact resistance between metal electrode and tunneling layer. The underlying mechanisms were revealed to be due to the charge transfer, orbitals and interfacial dipole. This work improves the current understanding of the metal-MoS2 interface and proposes a new way to overcome the current severe contact issues for future nanoelectronic and optoelectronic applications.

中文翻译:

使用 BN-石墨烯横向隧穿层调制金属/MoS2 界面的传输特性

调节金属-半导体界面的 n 型和 p 型界面电荷传输特性对于实现高性能二维材料纳米器件至关重要,并且仍然是一个重大挑战。在这里,氮化硼 (BN)-石墨烯横向异质结构 (LH) 用作界面隧道层来控制肖特基势垒、费米能级钉扎和金属-MoS2 界面的电荷注入效率。具有石墨烯-N结结构的BN-石墨烯LH降低了n型垂直肖特基势垒并提高了界面隧穿概率,而石墨烯-B结结构降低了p型垂直肖特基势垒。因此,n型Au/LH-MoS2界面具有欧姆特性和高隧穿概率(~0.242),p型垂直肖特基势垒约为0。Pt/LH-MoS2 界面达到 20 eV。与其他报道的 BN 或石墨烯隧穿层相比,这种 BN-石墨烯 LH 隧穿层不仅抑制了从金属电极到 MoS2 层的电荷散射和费米能级钉扎效应,而且降低了金属电极和隧穿之间的接触电阻层。揭示了潜在机制是由于电荷转移、轨道和界面偶极子。这项工作提高了目前对金属-MoS2 界面的理解,并为未来的纳米电子和光电应用提供了一种克服当前严重接触问题的新方法。这种BN-石墨烯LH隧道层不仅抑制了从金属电极到MoS2层的电荷散射和费米能级钉扎效应,而且降低了金属电极和隧道层之间的接触电阻。揭示了潜在机制是由于电荷转移、轨道和界面偶极子。这项工作提高了目前对金属-MoS2 界面的理解,并为未来的纳米电子和光电应用提供了一种克服当前严重接触问题的新方法。这种BN-石墨烯LH隧道层不仅抑制了从金属电极到MoS2层的电荷散射和费米能级钉扎效应,而且降低了金属电极和隧道层之间的接触电阻。揭示了潜在机制是由于电荷转移、轨道和界面偶极子。这项工作提高了目前对金属-MoS2 界面的理解,并为未来的纳米电子和光电应用提供了一种克服当前严重接触问题的新方法。
更新日期:2020-09-15
down
wechat
bug