当前位置: X-MOL 学术J. Micromech. Microeng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Flow modeling and experimental verification of flow resistors used in microfluidic chips driven by capillary force
Journal of Micromechanics and Microengineering ( IF 2.4 ) Pub Date : 2020-09-14 , DOI: 10.1088/1361-6439/abb52c
Hao Zhong 1, 2 , Weifeng Huang 1 , Yong Li 1, 2 , Hao Tong 1, 2 , Guodong Liu 1, 2 , Zhiqiang Wang 1, 2
Affiliation  

A microfluidic chip driven by capillary force has the advantage of low cost and ease of manufacturing in batches, and its flow behavior is dominated by the geometry and surface characteristics of the microchannel. The design of mirochannel structures is very important for the microfluidic chips. This study presents a semi analytical method for the design of capillary microchannel. In this method, the quasi-steady state approximate solution method of the Young–Laplace equation is used to derive the capillary surface tension, and the parallel flow assumption based on the Reynolds equation is used to derive the resistance of the channel wall. A computational fluid dynamics simulation is used to provide the inlet effect coefficient and channel shape effect coefficient of this model. The availability of the semi analytical model is verified by the experiment. This model realizes the flow analysis of two-dimensional capillary flow channel with a continuous shape of the flow channel wa...

中文翻译:

毛细管力驱动的微流控芯片中流阻器的流场建模和实验验证

由毛细作用力驱动的微流体芯片具有成本低廉和易于批量制造的优点,并且其流动行为受微通道的几何形状和表面特性支配。微通道结构的设计对于微流控芯片非常重要。这项研究提出了一种毛细管微通道设计的半分析方法。在这种方法中,使用Young-Laplace方程的准稳态近似解方法来导出毛细管表面张力,并使用基于Reynolds方程的平行流动假设来导出通道壁的阻力。使用计算流体动力学仿真来提供该模型的入口效应系数和通道形状效应系数。通过实验验证了半解析模型的可用性。该模型实现了二维连续流动的毛细管流道的流动分析。
更新日期:2020-09-15
down
wechat
bug