当前位置: X-MOL 学术J. Lightw. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modulation and Switching Architecture Performances for Frequency Up-conversion of Complex-Modulated Data Signals based on a SOA-MZI Photonic Sampling Mixer
Journal of Lightwave Technology ( IF 4.1 ) Pub Date : 2020-10-01 , DOI: 10.1109/jlt.2020.3011577
Dimitrios Kastritsis , Thierry Rampone , Kyriakos E. Zoiros , Ammar Sharaiha

A theoretical and experimental performance analysis of a semiconductor optical amplifier-Mach–Zehnder interferometer (SOA-MZI) photonic sampling mixer used as a frequency up-converter is presented employing Switching and Modulation architectures. An active mode-locked laser, generating 2 ps-width pulses at a repetition rate equal to 10 GHz, is used as a sampling source. An optical carrier intensity modulated by a sinusoidal signal at 1 GHz is up-converted to 9 GHz and 39 GHz. High conversion gains (CGs) of about 15 dB are demonstrated for the frequency conversion to 9 GHz using both architectures, whereas up to 4 dB and 9 dB for the conversion to 39 GHz employing switching and modulation architectures, respectively. Small-signal equations for the up-converted signal in both architectures are formulated and developed, which permit to quantify the CG from closed-form expressions. The numerically calculated CG values are in very good agreement with those obtained experimentally. The validated equations are subsequently employed to explain the performance differences between the two architectures in terms of the CG. Furthermore, signals modulated by QPSK and 16-QAM complex modulation formats at different baud rates are up-converted from 750 MHz to 9.25 GHz and 39.75 GHz and their error vector magnitude is evaluated and compared. The maximum bit rate that meets the forward error correction (FEC) limit is achieved using the Modulation architecture. It is 1 Gbps and 512 Mbps for QPSK and 16-QAM modulations, respectively.

中文翻译:

基于 SOA-MZI 光子采样混频器的复调制数据信号上变频调制和开关架构性能

介绍了用作频率上变频器的半导体光放大器-马赫-曾德干涉仪 (SOA-MZI) 光子采样混频器的理论和实验性能分析,采用开关和调制架构。有源锁模激光器以等于 10 GHz 的重复率产生 2 ps 宽度的脉冲,用作采样源。由 1 GHz 正弦信号调制的光载波强度被上变频到 9 GHz 和 39 GHz。使用这两种架构的频率转换到 9 GHz 的高转换增益 (CG) 显示为大约 15 dB,而使用开关和调制架构转换到 39 GHz 的频率分别高达 4 dB 和 9 dB。两种架构中上变频信号的小信号方程都被公式化和开发出来,它允许从封闭形式的表达式中量化 CG。数值计算的 CG 值与实验获得的值非常吻合。随后使用经过验证的方程来解释两种架构在 CG 方面的性能差异。此外,以不同波特率由 QPSK 和 16-QAM 复合调制格式调制的信号从 750 MHz 上变频到 9.25 GHz 和 39.75 GHz,并评估和比较它们的误差矢量幅度。使用调制架构可实现满足前向纠错 (FEC) 限制的最大比特率。QPSK 和 16-QAM 调制分别为 1 Gbps 和 512 Mbps。随后使用经过验证的方程来解释两种架构在 CG 方面的性能差异。此外,以不同波特率由 QPSK 和 16-QAM 复合调制格式调制的信号从 750 MHz 上变频到 9.25 GHz 和 39.75 GHz,并评估和比较它们的误差矢量幅度。使用调制架构可实现满足前向纠错 (FEC) 限制的最大比特率。QPSK 和 16-QAM 调制分别为 1 Gbps 和 512 Mbps。随后使用经过验证的方程来解释两种架构在 CG 方面的性能差异。此外,以不同波特率由 QPSK 和 16-QAM 复合调制格式调制的信号从 750 MHz 上变频到 9.25 GHz 和 39.75 GHz,并评估和比较它们的误差矢量幅度。使用调制架构可实现满足前向纠错 (FEC) 限制的最大比特率。QPSK 和 16-QAM 调制分别为 1 Gbps 和 512 Mbps。评估和比较 75 GHz 及其误差矢量幅度。使用调制架构可实现满足前向纠错 (FEC) 限制的最大比特率。QPSK 和 16-QAM 调制分别为 1 Gbps 和 512 Mbps。评估和比较 75 GHz 及其误差矢量幅度。使用调制架构可实现满足前向纠错 (FEC) 限制的最大比特率。QPSK 和 16-QAM 调制分别为 1 Gbps 和 512 Mbps。
更新日期:2020-10-01
down
wechat
bug