当前位置: X-MOL 学术J. Lightw. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-resolution Optical Microresonator-Based Sensor Enabled by Microwave Photonic Sidebands Processing
Journal of Lightwave Technology ( IF 4.7 ) Pub Date : 2020-10-01 , DOI: 10.1109/jlt.2020.3005218
Xiaoyi Tian , Keith Powell , Liwei Li , Suen Xin Chew , Xiaoke Yi , Linh Nguyen , Robert A. Minasian

We theoretically and experimentally investigate the high-resolution performance of an optical microresonator-based sensor scheme incorporating microwave photonic sidebands processing. The optical power and phase profiles of the modulation sidebands are equalised to achieve ultrahigh-rejection RF notches with ultranarrow tip width in the electrical spectrum, where environmental changes are detected via the shift in the measurand dependent frequency of the ultradeep RF notch. The proposed structure demonstrates the ability to realise ultrahigh resolution sensing for any optical microresonator response with arbitrary coupling conditions, thus relieving strict fabrication requirements. Furthermore, factors that can disrupt the matching conditions during the dynamic sensing process are also discussed and resolved with the aid of the feedback compensation scheme which increases the resilience of the system against these interferences. As a proof-of-concept, a proposed sensing configuration comprising a dual-drive Mach–Zehnder modulator and a silicon-on-insulator microdisk resonator is demonstrated for temperature sensing. The measured temperature sensitivity is around 8.87 GHz/°C and a high rejection ratio of over 60 dB of the RF notch is successfully maintained with an ultranarrow notch tip width that makes up only 0.003% of the whole sensing operation range of 35 GHz. The temperature resolution is significantly improved by about 2500 times compared to the conventional method of direct monitoring of the optical spectrum.

中文翻译:

通过微波光子边带处理实现的高分辨率光学微谐振器传感器

我们从理论上和实验上研究了结合微波光子边带处理的基于光学微谐振器的传感器方案的高分辨率性能。调制边带的光功率和相位分布被均衡,以实现在电频谱中具有超窄尖端宽度的超高抑制 RF 陷波,其中通过超深 RF 陷波的被测量依赖频率的偏移来检测环境变化。所提出的结构证明了在任意耦合条件下对任何光学微谐振器响应实现超高分辨率传感的能力,从而减轻了严格的制造要求。此外,还讨论了在动态传感过程中可能破坏匹配条件的因素,并借助反馈补偿方案解决了这些问题,该方案提高了系统对这些干扰的恢复能力。作为概念验证,展示了一种提议的传感配置,包括双驱动马赫-曾德调制器和绝缘体上硅微盘谐振器,用于温度传感。测得的温度灵敏度约为 8.87 GHz/°C,并且通过仅占 35 GHz 整个传感操作范围的 0.003% 的超窄凹口尖端宽度成功保持了超过 60 dB 的射频凹口的高抑制比。与直接监测光谱的传统方法相比,温度分辨率显着提高了约 2500 倍。
更新日期:2020-10-01
down
wechat
bug