当前位置: X-MOL 学术Math. Probl. Eng. › 论文详情
Application of the Artificial Fish School Algorithm and Particle Filter Algorithm in the Industrial Process Control Particle Filtering Algorithm for Industrial Process Control
Mathematical Problems in Engineering ( IF 1.009 ) Pub Date : 2020-09-15 , DOI: 10.1155/2020/3070539
Zhaoxia Huang

The Industrial Internet of Things (IIoT) is of strategic importance in the new era of industrial big data, creating a brand-new industrial ecosystem. Considering the unknown parameters in the IIoT-based industrial process control systems, this paper combines the artificial fish swarm algorithm (AFSA) and the particle filtering (PF) algorithm into the AFSA-PF algorithm based on the self-organizing state space (SOSS) model. The AFSA-PF algorithm not only can estimates the system state but also can make the sampling distribution of the unknown parameter to move the true parameter distribution. Ultimately, the true values of the unknown parameters are identified. In this way, the system model can gradually approximate the actual IIoT-based industrial process control system.
更新日期:2020-09-15

 

全部期刊列表>>
《自然》编辑与您分享如何成为优质审稿人-信息流
物理学研究前沿热点精选期刊推荐
科研绘图
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
自然职场线上招聘会
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
阿拉丁试剂right
张晓晨
田蕾蕾
李闯创
刘天飞
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
X-MOL
清华大学
廖矿标
陈永胜
试剂库存
down
wechat
bug