当前位置: X-MOL 学术Math. Probl. Eng. › 论文详情
Numerical Simulation of the Fractional Dispersion Advection Equations Based on the Lattice Boltzmann Model
Mathematical Problems in Engineering ( IF 1.009 ) Pub Date : 2020-09-15 , DOI: 10.1155/2020/2570252
Boyu Wang; Jianying Zhang; Guangwu Yan

The fractional dispersion advection equations (FDAEs) have recently attracted considerable attention due to their extensive application in the fields of science and engineering. For example, it has been shown that the anomalous solute transport behaviour that exists in hydrology can be well explained by introducing FDAEs. Therefore, the study of FDAEs has profound significance for understanding real transport phenomena in nature. Nevertheless, the existing algorithms for the FDAEs are generally intricate and costly. Therefore, exploiting an efficient solution technique has been a concern for scientists. In an effort to overcome this challenge, a promising lattice Boltzmann (LB) model for the FDAEs is presented in this paper. The Riemann–Liouville definition and the Grünwald–Letnikov definition are introduced for the time derivatives. In addition, Chapman–Enskog analysis is applied to recover the FDAEs. To test the validity of the model, three numerical examples are carried out. In addition, a comparative study of the proposed model and the classical implicit finite difference scheme is also conducted. The numerical results show that the model is suitable for simulating FDAEs.
更新日期:2020-09-15

 

全部期刊列表>>
《自然》编辑与您分享如何成为优质审稿人-信息流
物理学研究前沿热点精选期刊推荐
科研绘图
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
自然职场线上招聘会
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
阿拉丁试剂right
张晓晨
田蕾蕾
李闯创
刘天飞
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
X-MOL
清华大学
廖矿标
陈永胜
试剂库存
down
wechat
bug